|
a |
|
b/modas/phenorm.py |
|
|
1 |
import pandas as pd |
|
|
2 |
import numpy as np |
|
|
3 |
from scipy import stats |
|
|
4 |
from scipy.stats import norm |
|
|
5 |
from sklearn.preprocessing import MinMaxScaler |
|
|
6 |
import warnings |
|
|
7 |
import subprocess |
|
|
8 |
import re |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def abundance_filter(d, abundance): |
|
|
12 |
return d.loc[:, d.mean() >= abundance] |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def isDigit(x): |
|
|
16 |
try: |
|
|
17 |
float(x) |
|
|
18 |
return True |
|
|
19 |
except ValueError: |
|
|
20 |
return False |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def missing_filter(d, missing_ratio): |
|
|
24 |
if d.applymap(np.isreal).all().sum() == d.shape[1]: |
|
|
25 |
d = d.loc[:, d.applymap(np.isnan).sum() <= d.shape[0] * missing_ratio] |
|
|
26 |
d = d.fillna(0) |
|
|
27 |
else: |
|
|
28 |
d = d.loc[:, d.applymap(lambda x:isDigit(x)).sum() >= d.shape[0] * missing_ratio] |
|
|
29 |
d_array = d.values |
|
|
30 |
d_array[~d.applymap(lambda x:isDigit(x))] = 0 |
|
|
31 |
d.loc[:, :] = d_array |
|
|
32 |
d = d.astype(float) |
|
|
33 |
#d = d.loc[:, (d == 0).sum() <= d.shape[0] * missing_ratio] |
|
|
34 |
return d |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
def log2_scale(d): |
|
|
38 |
return np.log2(d+1) |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
def ln_scale(d): |
|
|
42 |
return np.log(d+1) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def log10_scale(d): |
|
|
46 |
return np.log10(d+1) |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def normalize_scale(d): |
|
|
50 |
d = d + 1 |
|
|
51 |
d = d.apply(lambda x: stats.boxcox(x)[0]) |
|
|
52 |
d.loc[:,:] = MinMaxScaler().fit_transform(d.values) |
|
|
53 |
return d |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def ppoints(n, a=None): |
|
|
57 |
try: |
|
|
58 |
n = np.float64(len(n)) |
|
|
59 |
except TypeError: |
|
|
60 |
n = np.float64(n) |
|
|
61 |
if a is None: |
|
|
62 |
a = 3.0/8 if(n <= 10) else 1.0/2 |
|
|
63 |
return (np.arange(n) + 1 - a)/(n + 1 - 2*a) |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
def qqnorm(y): |
|
|
67 |
ina = np.isnan(y) |
|
|
68 |
if ina.sum() > 0: |
|
|
69 |
yN = y |
|
|
70 |
y = y[~ina] |
|
|
71 |
n = y.shape[0] |
|
|
72 |
if n == 0: |
|
|
73 |
print('y is empty or has only NAs') |
|
|
74 |
return np.array([]) |
|
|
75 |
x = np.around(norm.ppf(ppoints(n)[np.argsort(np.argsort(y))]), decimals=15) |
|
|
76 |
if ina.sum() > 0: |
|
|
77 |
y = x |
|
|
78 |
x = yN |
|
|
79 |
x[~ina] = y |
|
|
80 |
return x |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
def trait_correct(pc, y): |
|
|
84 |
pc1 = pd.concat([pd.DataFrame(np.ones((y.shape[0], 1)), index=pc.index), pc], axis=1) |
|
|
85 |
vhat = np.dot(np.linalg.pinv(np.dot(pc1.T, pc1)), np.dot(pc1.T, y)) |
|
|
86 |
if len(vhat.shape) == 1: |
|
|
87 |
y_corr = y - np.dot(pc, vhat[1:]) |
|
|
88 |
else: |
|
|
89 |
y_corr = y - np.dot(pc, vhat[1:, :]) |
|
|
90 |
return y_corr |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
def pc_calc(bed, pc_num): |
|
|
94 |
try: |
|
|
95 |
from rpy2.robjects.packages import importr |
|
|
96 |
from rpy2.robjects import pandas2ri |
|
|
97 |
from rpy2.rinterface_lib.embedded import RRuntimeError |
|
|
98 |
import rpy2.robjects as robjects |
|
|
99 |
pandas2ri.activate() |
|
|
100 |
|
|
|
101 |
warnings.filterwarnings("ignore") |
|
|
102 |
base = importr('base') |
|
|
103 |
utils = importr('utils') |
|
|
104 |
if not base.require('bigsnpr', quietly=True)[0]: |
|
|
105 |
utils_path = subprocess.check_output('locate modas/utils', shell=True, text=True, encoding='utf-8') |
|
|
106 |
# utils_path = '/'.join(re.search('\n(.*site-packages.*)\n', utils_path).group(1).split('/')[:-1]) |
|
|
107 |
utils_path = re.search('\n(.*site-packages.*)\n', utils_path).group(1) |
|
|
108 |
if not utils_path.endswith('utils'): |
|
|
109 |
utils_path = '/'.join(utils_path.split('/')[:-1]) |
|
|
110 |
utils.install_packages(utils_path + '/Matrix_1.6-5.tar.gz', repos=robjects.rinterface.NULL, type='source', |
|
|
111 |
quiet=True) |
|
|
112 |
utils.install_packages('bigsnpr', dependence=True, repos='https://cloud.r-project.org', quiet=True) |
|
|
113 |
robjects.r['options'](warn=-1) |
|
|
114 |
bigsnpr = importr('bigsnpr') |
|
|
115 |
bigstatsr = importr('bigstatsr') |
|
|
116 |
|
|
|
117 |
base.sink('/dev/null') |
|
|
118 |
g = bigsnpr.snp_readBed(bed, backingfile=base.tempfile()) |
|
|
119 |
g = bigsnpr.snp_attach(g) |
|
|
120 |
# svd = bigsnpr.snp_autoSVD(g.rx2[0], infos_chr=g[2]['chromosome'], ncores=1, |
|
|
121 |
# infos_pos=g[2]['physical.pos'], thr_r2=np.nan, k=pc_num) |
|
|
122 |
svd = bigsnpr.snp_autoSVD(g.rx2('genotypes'), infos_chr=g.rx2('map').rx2('chromosome'), |
|
|
123 |
infos_pos=g.rx2('map').rx2('physical.pos'), thr_r2=np.nan, k=pc_num) |
|
|
124 |
base.sink() |
|
|
125 |
except RRuntimeError: |
|
|
126 |
return None |
|
|
127 |
else: |
|
|
128 |
pc = bigstatsr.predict_big_SVD(svd) |
|
|
129 |
# pc = base.data_frame(pc, row_names=g[1]['sample.ID']) |
|
|
130 |
#pc = base.cbind(pc.rownames, pc) |
|
|
131 |
pc = pd.DataFrame(pc, index=g.rx2('fam').rx2('sample.ID')) |
|
|
132 |
pc.columns = ['PC' + str(i) for i in range(1, pc_num+1)] |
|
|
133 |
return pc |