[a43cea]: / modas / mr.py

Download this file

227 lines (199 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pandas as pd
import numpy as np
import pyranges as pr
from sklearn.linear_model import LinearRegression
from pandas_plink import read_plink1_bin
from scipy.stats import chi2
import modas.multiprocess as mp
import subprocess
import warnings
import shutil
import glob
import sys
import os
import re
utils_path = subprocess.check_output('locate modas/utils', shell=True, text=True, encoding='utf-8')
#utils_path = '/'.join(re.search('\n(.*site-packages.*)\n', utils_path).group(1).split('/')[:-1])
utils_path = re.search('\n(.*site-packages.*)\n', utils_path).group(1)
if not utils_path.endswith('utils'):
utils_path = '/'.join(utils_path.split('/')[:-1])
def lm_res(y, X):
idx = np.isnan(X) | np.isnan(y)
X = X[~idx].reshape(-1, 1)
y = y[~idx]
lm = LinearRegression().fit(X, y)
sigma2 = np.sum((y - lm.predict(X))**2)/(X.shape[0]-1)
se = np.sqrt(np.diag(np.linalg.pinv(np.dot(X.T, X))))[-1] * sigma2
effect = lm.coef_[-1]
rsq = lm.score(X, y)
return pd.Series(dict(zip(['effect', 'se', 'rsq'], [effect, se, rsq])))
def MR(mTrait, pTrait, g, pvalue_cutoff):
p = pd.concat([mTrait.to_frame(), pTrait], axis=1)
snp_lm = p.apply(lm_res, args=[g.values])
mTrait_lm = p.apply(lm_res, args=[mTrait.values])
pTrait_mTrait = snp_lm.loc['effect', :][1:] / snp_lm.loc['effect', :][0]
var_upper = pTrait.var() * (1 - mTrait_lm.loc['rsq', :][1:])
var_down = mTrait.shape[0] * mTrait.var() * snp_lm.loc['rsq', :][0]
var = var_upper / var_down
TMR = pTrait_mTrait**2 / var
pvalue = 1 - chi2.cdf(TMR, 1)
MR_res = pd.DataFrame(dict(zip(['snp', 'mTrait', 'pTrait', 'effect', 'TMR', 'pvalue'],
[[g.name]*pTrait.shape[1], [mTrait.name]*pTrait.shape[1], pTrait.columns, pTrait_mTrait, TMR, pvalue])))
MR_res = MR_res.loc[(MR_res.pvalue<=pvalue_cutoff) & (MR_res.mTrait!=MR_res.pTrait),:]
return MR_res
def MR_parallel(mTrait_qtl, mTrait, pTrait, geno, threads, pvalue_cutoff):
args = list()
for index, row in mTrait_qtl.iterrows():
rs = row['SNP']
mTrait_name = row['phe_name']
args.append((mTrait.loc[:, mTrait_name], pTrait, geno.loc[:, rs], pvalue_cutoff))
res = mp.parallel(MR, args, threads)
res = pd.concat([i for i in res])
return res
def var_bXY(bzx, bzx_se, bzy, bzy_se):
varbXY = bzx_se**2*bzy**2/bzx**4 + bzy_se**2/bzx**2
return varbXY
def generate_geno_batch(mTrait_qtl, mTrait, pTrait, geno, threads, bed_dir, rs_dir):
if os.path.exists(bed_dir):
shutil.rmtree(bed_dir)
os.mkdir(bed_dir)
if os.path.exists(rs_dir):
shutil.rmtree(rs_dir)
os.mkdir(rs_dir)
plink_extract = utils_path + '/plink -bfile {} -extract {} --make-bed -out {}'
geno_batch = list()
for mTrait_name in mTrait_qtl.phe_name.unique():
out_name = bed_dir.strip('/') + '/' + mTrait_name
rs = mTrait_qtl.loc[mTrait_qtl.phe_name == mTrait_name, 'SNP']
rs_name = rs_dir.strip('/') + '/' + '_'.join([mTrait_name,'rs.txt'])
pd.Series(rs).to_frame().to_csv(rs_name, index=False, header=None)
geno_batch.append((plink_extract.format(geno, rs_name, out_name),))
out_name = bed_dir.strip('/') + '/pTrait'
rs_name = rs_dir.strip('/') + '/pTrait_rs.txt'
mTrait_qtl['SNP'].to_frame().to_csv(rs_name, index=False, header=None)
geno_batch.append((plink_extract.format(geno, rs_name, out_name),))
mp.parallel(mp.run, geno_batch, threads)
for fn in glob.glob(bed_dir.strip('/')+'/*fam'):
fam = pd.read_csv(fn, sep=' ', header=None)
mTrait_name = fn.split('/')[-1].replace('.fam', '')
if mTrait_name == 'pTrait':
pTrait = pTrait.reindex(fam[0])
fam.index = fam[0]
fam = pd.concat([fam, pTrait], axis=1)
else:
fam.loc[:, 5] = mTrait.loc[:, mTrait_name].reindex(fam[0]).values
fam.to_csv(fn, index=False, header=None, sep=' ', na_rep='NA')
def calc_MLM_effect(bed_dir, pTrait, threads, geno):
args = list()
geno_prefix = geno.split('/')[-1]
fam = pd.read_csv(geno + '.fam', sep=r'\s+', header=None)
fam[5] = 1
fam.to_csv(geno_prefix + '.link.fam', sep='\t', na_rep='NA', header=None, index=False)
if os.path.exists(geno_prefix + '.link.bed'):
os.remove(geno_prefix + '.link.bed')
if os.path.exists(geno_prefix + '.link.bim'):
os.remove(geno_prefix + '.link.bim')
os.symlink(geno + '.bed', geno_prefix + '.link.bed')
os.symlink(geno + '.bim', geno_prefix + '.link.bim')
related_matrix_cmd = utils_path + '/gemma -bfile {0}.link -gk 1 -o {1}'.format(geno_prefix, geno_prefix)
s = mp.run(related_matrix_cmd)
if s != 0:
return None
gemma_cmd_mTrait = utils_path + '/gemma -bfile {0} -k ./output/{1}.cXX.txt -lmm -n 1 -o {2}'
gemma_cmd_pTrait = utils_path + '/gemma -bfile {0} -k ./output/{1}.cXX.txt -lmm -n {2} -o {3}'
for i in glob.glob(bed_dir + '/*.bed'):
i = i.replace('.bed', '')
if i.split('/')[-1] != 'pTrait':
prefix = i.split('/')[-1]
args.append((gemma_cmd_mTrait.format(i, geno_prefix, 'mTrait_' + prefix),))
else:
for _, pTrait_name in enumerate(pTrait.columns):
args.append((gemma_cmd_pTrait.format(i, geno_prefix, _ + 2, 'pTrait_' + pTrait_name),))
s = mp.parallel(mp.run, args, threads)
os.remove(geno_prefix + '.link.bed')
os.remove(geno_prefix + '.link.bim')
os.remove(geno_prefix + '.link.fam')
return s
def get_MLM_effect(fn):
assoc = pd.read_csv(fn, sep='\t')
assoc.index = assoc['rs']
return assoc[['beta', 'se']]
def get_MLM_effect_parallell(assoc_dir, mTrait, pTrait, threads):
mTrait_effect = pd.DataFrame()
args = []
#pTrait_name = []
# for fn in glob.glob(assoc_dir.strip('/') + '/mTrait*.assoc.txt'):
# mTrait_name = fn.split('/')[-1].split('_')[-1].replace('.assoc.txt', '')
# assoc = pd.read_csv(fn, sep='\t')
# assoc.index = mTrait_name+';' + assoc['rs']
# mTrait_effect = pd.concat([mTrait_effect, assoc[['beta', 'se']]])
# for fn in glob.glob(assoc_dir.strip('/') + '/pTrait*assoc.txt'):
# pTrait_name.append(fn.split('/')[-1].split('_')[-1].replace('.assoc.txt', ''))
# args.append((fn,))
for mTrait_name in mTrait.columns:
fn = assoc_dir.strip('/') + '/mTrait_' + mTrait_name + '.assoc.txt'
assoc = pd.read_csv(fn, sep='\t')
assoc.index = mTrait_name+';' + assoc['rs']
mTrait_effect = pd.concat([mTrait_effect, assoc[['beta', 'se']]])
for pTrait_name in pTrait.columns:
fn = assoc_dir.strip('/') + '/pTrait_' + pTrait_name + '.assoc.txt'
args.append((fn,))
pTrait_res = mp.parallel(get_MLM_effect, args, threads)
pTrait_effect = pd.concat([i['beta'] for i in pTrait_res], axis=1)
pTrait_effect.columns = pTrait.columns
pTrait_se = pd.concat([i['se'] for i in pTrait_res], axis=1)
pTrait_se.columns = pTrait.columns
return mTrait_effect, pTrait_effect, pTrait_se
def MR_MLM(mTrait_effect_snp, pTrait_effect_snp, pTrait_se_snp, pvalue_cutoff):
mTrait_name, rs = mTrait_effect_snp.name.split(';')
bxy = pTrait_effect_snp / mTrait_effect_snp['beta']
varbXY = var_bXY(mTrait_effect_snp['beta'], mTrait_effect_snp['se'], pTrait_effect_snp, pTrait_se_snp)
TMR = bxy**2 / varbXY
pvalue = 1 - chi2.cdf(TMR, 1)
MR_res = pd.DataFrame(dict(zip(['snp', 'mTrait', 'pTrait', 'effect', 'TMR', 'pvalue'],
[[rs] * pTrait_effect_snp.shape[0], [mTrait_name] * pTrait_effect_snp.shape[0],
pTrait_effect_snp.index, bxy, TMR, pvalue])))
MR_res = MR_res.loc[(MR_res.pvalue<=pvalue_cutoff) & (MR_res.mTrait!=MR_res.pTrait), :]
return MR_res
def MR_MLM_parallel(mTrait_qtl, mTrait_effect, pTrait_effect, pTrait_se, threads, pvalue_cutoff):
args = []
for index, row in mTrait_qtl.iterrows():
mTrait_name = row['phe_name']
rs = row['SNP']
args.append((mTrait_effect.loc[';'.join([mTrait_name, rs]),:], pTrait_effect.loc[rs, :], pTrait_se.loc[rs, :], pvalue_cutoff))
res = mp.parallel(MR_MLM, args, threads)
res = pd.concat([i for i in res])
return res
def edge_weight(qtl, MR_res):
MR_res = MR_res.loc[MR_res.mTrait!=MR_res.pTrait,:]
MR_res = MR_res.sort_values(by='pvalue')
qtl_peak_pos = qtl[['CHR', 'phe_name']]
qtl_peak_pos.loc[:, 'start'] = qtl['SNP'].apply(lambda x: int(x.split('_')[-1]) - 1)
qtl_peak_pos.loc[:, 'end'] = qtl['SNP'].apply(lambda x: int(x.split('_')[-1]) + 1)
qtl_peak_pos = qtl_peak_pos[['CHR', 'start', 'end', 'phe_name']]
qtl_peak_pos.columns = ['Chromosome', 'Start', 'End', 'phe_name']
qtl_peak_range = qtl[['CHR', 'phe_name']]
qtl_peak_range.loc[:, 'start'] = qtl['SNP'].apply(lambda x: int(x.split('_')[-1]) - 1000000)
qtl_peak_range.loc[:, 'end'] = qtl['SNP'].apply(lambda x: int(x.split('_')[-1]) + 1000000)
qtl_peak_range = qtl_peak_range[['CHR', 'start', 'end', 'phe_name']]
qtl_peak_range.columns = ['Chromosome', 'Start', 'End', 'phe_name']
qtl_peak_pos = pr.PyRanges(qtl_peak_pos)
qtl_peak_range = pr.PyRanges(qtl_peak_range)
coloc = qtl_peak_pos.join(qtl_peak_range)
res = pd.DataFrame()
for k in sorted(coloc.dfs.keys()):
res = pd.concat([res, coloc.dfs[k]])
res = res.loc[res.phe_name != res.phe_name_b, :]
mr_coloc = pd.merge(MR_res, res, left_on=['mTrait', 'pTrait'], right_on=['phe_name', 'phe_name_b'])
#coloc = coloc.sort_values(by='pvalue')
mr_coloc_count = mr_coloc.pvalue.value_counts().sort_index()
mr_count = MR_res.pvalue.value_counts().sort_index().cumsum()
weight = list()
for p in MR_res.pvalue.values:
coloc_count = mr_coloc_count[mr_coloc_count.index <= p].sum()
weight.append(coloc_count / mr_count[p])
MR_res.loc[:, 'weight'] = weight
edgeweight = MR_res[['mTrait', 'pTrait', 'weight']]
edgeweight = edgeweight.loc[edgeweight.weight >= 0.2, :]
edgeweight = edgeweight.sort_values(by=['mTrait', 'pTrait', 'weight'], ascending=False).drop_duplicates(subset=['mTrait', 'pTrait'])
return edgeweight