[63133d]: / code_snapshots / R / Seurat_code / charts.R

Download this file

144 lines (110 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
##########################################################################
#Blank chart
blankPlot <- ggplot()+geom_blank(aes(1,1)) +
theme(axis.line=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
legend.position="none",
panel.background=element_blank(),
panel.border=element_blank(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.background=element_blank())
##########################################################################
#Visualize data for filtering propouse
seurat_data_plot<- function(output_pdf_name) {
pdf(file=output_pdf_name, width=20, height=6)
#
for (n in 1:length(file_list)){
vln=VlnPlot(
object = list_all_Seurat[[n]],
#, "percent.mt", "percent.rb"
features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.rb")
)
scatterPlot = ggplot(list_all_Seurat[[n]]@meta.data, aes(x=nCount_RNA, y=nFeature_RNA)) +
geom_point() + geom_rug()
xdensity = ggplot(list_all_Seurat[[n]]@meta.data, aes(nCount_RNA)) +
geom_density(alpha=.5) +
theme(legend.position = "none") +
geom_vline(xintercept = mean(list_all_Seurat[[n]]@meta.data$nCount_RNA), color='red') +
geom_vline(xintercept = median(list_all_Seurat[[n]]@meta.data$nCount_RNA), color='blue')
ydensity = ggplot(list_all_Seurat[[n]]@meta.data, aes(nFeature_RNA)) +
geom_density(alpha=.5) +
theme(legend.position = "none")+
geom_vline(xintercept = mean(list_all_Seurat[[n]]@meta.data$nFeature_RNA), color='red') +
geom_vline(xintercept = median(list_all_Seurat[[n]]@meta.data$nFeature_RNA), color='blue')
scater_gen_umi = gridExtra::arrangeGrob(xdensity, blankPlot, scatterPlot, ydensity,
ncol=2, nrow=2, widths=c(4, 2), heights=c(1.4, 4))
plot(ggarrange(vln, scater_gen_umi,
labels = c("A", "B"),
ncol = 2, nrow = 1,
widths = c(1, 1.5))
)
}
dev.off()
}
##########################################################################
#Visualize data for filtering propouse FOR ATAC 1 SAMPLE
seurat_data_plot_ATAC<- function(output_pdf_name) {
pdf(file=output_pdf_name, width=20, height=6)
#
vln=VlnPlot(
object = pbmc.atac,
#, "percent.mt", "percent.rb"
features = c("nFeature_ATAC", "nCount_ATAC", "percent.mt", "percent.rb")
)
scatterPlot = ggplot(pbmc.atac@meta.data, aes(x=nCount_ATAC, y=nFeature_ATAC)) +
geom_point() + geom_rug()
xdensity = ggplot(pbmc.atac@meta.data, aes(nCount_ATAC)) +
geom_density(alpha=.5) +
theme(legend.position = "none") +
geom_vline(xintercept = mean(pbmc.atac@meta.data$nCount_ATAC), color='red') +
geom_vline(xintercept = median(pbmc.atac@meta.data$nCount_ATAC), color='blue')
ydensity = ggplot(pbmc.atac@meta.data, aes(nFeature_ATAC)) +
geom_density(alpha=.5) +
theme(legend.position = "none")+
geom_vline(xintercept = mean(pbmc.atac@meta.data$nFeature_ATAC), color='red') +
geom_vline(xintercept = median(pbmc.atac@meta.data$nFeature_ATAC), color='blue')
scater_gen_umi = gridExtra::arrangeGrob(xdensity, blankPlot, scatterPlot, ydensity,
ncol=2, nrow=2, widths=c(4, 2), heights=c(1.4, 4))
plot(ggarrange(vln, scater_gen_umi,
labels = c("A", "B"),
ncol = 2, nrow = 1,
widths = c(1, 1.5))
)
dev.off()
}
##########################################################################
#Visualize data for filtering propouse FOR RNA 1 SAMPLE
seurat_data_plot_RNA<- function(output_pdf_name) {
pdf(file=output_pdf_name, width=20, height=6)
#
vln=VlnPlot(
object = pbmc.rna,
#, "percent.mt", "percent.rb"
features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.rb")
)
scatterPlot = ggplot(pbmc.rna@meta.data, aes(x=nCount_RNA, y=nFeature_RNA)) +
geom_point() + geom_rug()
xdensity = ggplot(pbmc.rna@meta.data, aes(nCount_RNA)) +
geom_density(alpha=.5) +
theme(legend.position = "none") +
geom_vline(xintercept = mean(pbmc.rna@meta.data$nCount_RNA), color='red') +
geom_vline(xintercept = median(pbmc.rna@meta.data$nCount_RNA), color='blue')
ydensity = ggplot(pbmc.rna@meta.data, aes(nFeature_RNA)) +
geom_density(alpha=.5) +
theme(legend.position = "none")+
geom_vline(xintercept = mean(pbmc.rna@meta.data$nFeature_RNA), color='red') +
geom_vline(xintercept = median(pbmc.rna@meta.data$nFeature_RNA), color='blue')
scater_gen_umi = gridExtra::arrangeGrob(xdensity, blankPlot, scatterPlot, ydensity,
ncol=2, nrow=2, widths=c(4, 2), heights=c(1.4, 4))
plot(ggarrange(vln, scater_gen_umi,
labels = c("A", "B"),
ncol = 2, nrow = 1,
widths = c(1, 1.5))
)
dev.off()
}