% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/IL_Utilities.R
\name{SL.horseshoe}
\alias{SL.horseshoe}
\title{Horseshoe regression}
\usage{
SL.horseshoe(
Y,
X,
newX,
family,
prior = "horseshoe",
N = 20000L,
burnin = 1000L,
thinning = 1L,
...
)
}
\arguments{
\item{Y}{Outcome variable}
\item{X}{Covariate data frame}
\item{newX}{Dataframe to predict the outcome}
\item{family}{"gaussian" for regression, "binomial" for binary
classification. Untested options: "poisson" for for integer or count data}
\item{prior}{prior for regression coefficients to use. "Horseshoe" by default.
Untested options: ridge regression (prior="rr" or prior="ridge"),
lasso regression (prior="lasso") and horseshoe+ regression (prior="hs+"
or prior="horseshoe+")}
\item{N}{Number of posterior samples to generate.}
\item{burnin}{Number of burn-in samples.}
\item{thinning}{Desired level of thinning.}
\item{...}{other parameters passed to bayesreg function}
}
\value{
SL object
}
\description{
Horseshoe regression
}