[9987e3]: / R / hummus_objet.R

Download this file

705 lines (658 with data), 23.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#' @importFrom methods setClass
#' @importClassesFrom Signac Motif
#' @importClassesFrom SeuratObject Seurat
#' @importClassesFrom TFBSTools PWMatrixList
NULL
#' @title Motifs database class
#'
#' @description MotifsDatabase object stores motifs(PFM matrices)
#' and tf2motifs (TF to motifs names mapping) data.
#'
#' @slot motifs (TFBSTools::PWMatrixList) - PFM matrices.
#' @slot tf2motifs (data.frame) - TF to motif names mapping. Columns: motif, tf.
#'
#' @name motifs_db-class
#' @rdname motifs_db-class
#' @exportClass motifs_db
motifs_db <- setClass("motifs_db",
representation(
motifs = "PWMatrixList",
tf2motifs = "data.frame",
tfs = "character"
))
setMethod("show", "motifs_db",
function(object) {
cat(
paste("Motifs database object with :\n- ",
length(object@motifs), "motifs\n- ",
length(unique(object@tf2motifs$tf)), " TFs\n- ",
nrow(object@tf2motifs), "TF to motif names mapping"
)
)
})
#' @title Multiplex class
#' @description Multiplex object stores a list of networks, a list of features and
#' a list of logicals indicating if the network is directed or weighted.
#' @slot networks (list) - List of networks.
#' @slot features (vector) - Vector of features.
#' @slot directed (list) - List of logical indicating if networks are directed.
#' @slot weighted (list) - List of logical indicating if networks are weighted.
#'
#' @name multiplex-class
#' @rdname multiplex-class
#' @exportClass multiplex
multiplex <- setClass(Class = "multiplex",
slots = c(
"networks" = "list", # List of networks
"features" = "vector", # Vector of features
"directed" = "list", # Logical indicating
# if the network is directed
"weighted" = "list" # Logical indicating
# if the network is weighted
# "network_names" = "vector" # Vector of network names
)
)
setMethod("show", "multiplex",
function(object) {
cat(
# Reprensentation of the multiplex object
# with the number of networks and features, and the list of network names
paste("Multiplex of ", length(object@networks),
" networks with", length(object@features), "features.\n",
"Networks names: ", paste(names(object@networks), collapse = ", "))
)
})
#' @title Bipartite class
#'
#' @description Bipartite object stores a bipartite network (edge list) and the names of the
#' left and right features' multiplexes.
#' @slot network (data.frame) - Bipartite network (edge list)
#' @slot multiplex_left (character) - Left features' multiplex
#' @slot multiplex_right (character) - Right features' multiplex
#'
#' @name bipartite-class
#' @rdname bipartite-class
#' @exportClass bipartite
#'
#' @examples bipartite <- bipartite(
#' network = bipartite_network,
#' multiplex_left = "RNA",
#' multiplex_right = "peaks")
#'
bipartite <- setClass(Class = "bipartite",
slots = c(
"network" = "data.frame", # Bipartite network (edge list)
"multiplex_left" = "character", # left features' multiplex
"multiplex_right" = "character" # right features multiplex
)
)
setMethod("show", "bipartite",
function(object) {
cat(
paste("Bipartite network of ", nrow(object@network), " edges.\n",
"Multiplexes names: ", object@multiplex_left,
" and ", object@multiplex_right, "\n")
)
})
#' @title Multilayer class
#'
#' @description Multilayer object stores a list of bipartite networks and a
#' list of multiplex networks. It can also stores a config list to create a
#' yaml file, which is used to parametrize the random walk with restart to
#' explore the multilayer.
#'
#' @slot bipartites (list) - List of bipartite networks
#' @slot multiplex (list) - List of multiplex networks
#' @slot config (list) - List of parameters to parametrize the random walk with
#' restart to explore the multilayer
#'
#' @name multilayer-class
#' @rdname multilayer-class
#' @exportClass multilayer
#'
multilayer <- setClass(Class = "multilayer",
slots = c(
"bipartites" = "list", # Bipartite networks
"multiplex" = "list", # Multiplex networks
"config" = "list" # Parameters to create the hmln
) # representation of a yaml file
)
setMethod("show", "multilayer",
# Representation of the multilayer object with the number of bipartite and
# multiplex networks, and the list of bipartite names and multiplex names
function(object) {
cat(
paste("Multilayer network containing ",
length(object@bipartites), " bipartite networks and ",
length(object@multiplex), " multiplex networks.\n",
"\n- Multiplex names: ", paste(names(object@multiplex),
collapse = ", "),
"\n- Bipartite names: ", paste(names(object@bipartites),
collapse = ", "), "\n"
)
)
})
#' The Hummus_Object class
#'
#' The Hummus_Object object is an extended \code{Seurat} object
#' for the storage and analysis of a heterogeneous multilayer network
#'
#' @slot multilayer (multilayer) - Multilayer object
#' @slot motifs_db (motifs_db) - Motifs database
#' @slot assay (list) - List of assays
#'
#' @name Hummus_Object-class
#' @rdname Hummus_Object-class
#' @exportClass Hummus_Object
#' @export
#'
Hummus_Object <- setClass(
Class = "Hummus_Object",
slots = list(
"assays" = "list",
"active.assay" = "character",
"multilayer" = "multilayer",
"motifs_db" = "motifs_db"
)
)
#' @title Initiate a hummus object
#'
#' @description Initiate a hummus object
#'
#' @param seurat_assays A Seurat object or a list of Seurat assays
#' @param active.assay The name of the active assay. Default: NULL
#' @param multilayer A multilayer object. Default: NULL
#' @param motifs_db A motifs_db object. Default: NULL
#' @return A hummus object
#' @export
#'
#' @examples seurat_object <- Seurat::CreateSeuratObject(counts = matrix(rnorm(1000), nrow = 100, ncol = 10))
#' hummus <- InitiateHummus_Object(seurat_object)
#' hummus
Initiate_Hummus_Object <- function(
seurat_assays,
active.assay = NULL,
multilayer = NULL,
motifs_db = NULL) {
# Check if seurat_assays is a Seurat object or a list of Seurat assays
if (inherits(seurat_assays, "Seurat")) {
assays <- seurat_assays@assays
# setup active assay name
active.assay <- seurat_assays@active.assay
} else if (inherits(seurat_assays, "list")) {
assays <- seurat_assays
# setup active assay name
if (is.null(active.assay)) {
active.assay <- names(x = assays)[1]
} else if (!(active.assay %in% names(x = assays))) {
stop("active.assay must be a valid assay name.")
} else {
active.assay <- active.assay
}
} else {
stop("seurat_assays must be a Seurat object or a list of Seurat assays.")
}
# Check if multilayer is a multilayer object or NULL
if (!inherits(multilayer, "multilayer")) {
if (!is.null(multilayer)) {
stop("multilayer must be a multilayer object or NULL.")
} else {
multilayer <- new("multilayer")
}
}
# Check if motifs_db is a motifs_db object or NULL
if (!inherits(motifs_db, "motifs_db")) {
if (!is.null(motifs_db)) {
stop("motifs_db must be a motifs_db object or NULL.")
} else {
motifs_db <- new("motifs_db")
}
}
object <- new(
Class = "Hummus_Object",
assays = assays,
active.assay = active.assay,
multilayer = multilayer,
motifs_db = motifs_db
)
return(object)
}
#' @title Get Default assays of Hummus_Object (based on Seurat)
#' @name DefaultAssay
#' @export
#'
#' @examples
#' # Get current default assay
#' DefaultAssay(object = pbmc_small)
#'
DefaultAssay.Hummus_Object <- function(object, ...) {
SeuratObject::CheckDots(...)
default <- slot(object = object, name = 'active.assay')
if (!length(x = default)) {
default <- NULL
}
return(default)
}
#' Default Assay
#'
#' Get and set the default assay
#'
#' @param object An object
#'
#' @return \code{DefaultAssay}: The name of the default assay
#'
#' @rdname DefaultAssay
#' @export DefaultAssay
#'
#' @concept data-access
#'
DefaultAssay <- function(object, ...) {
UseMethod(generic = 'DefaultAssay', object = object)
}
#' @param value Name of assay to set as default
#'
#' @return \code{DefaultAssay<-}: An object with the default assay updated
#'
#' @rdname DefaultAssay
#' @export DefaultAssay<-
#'
"DefaultAssay<-" <- function(object, ..., value) {
UseMethod(generic = 'DefaultAssay<-', object = object)
}
#' @title Variable features of assays in Hummus_Object (based on Seurat)
#' @name VariableFeatures
#' @export
#'
VariableFeatures.Hummus_Object <- function(
object,
method = NULL,
assay = NULL,
nfeatures = NULL,
layer = NA,
simplify = TRUE,
selection.method = lifecycle::deprecated(),
...
) {
SeuratObject::CheckDots(...)
if (lifecycle::is_present(arg = selection.method)) {
SeuratObject.Deprecate(
when = '5.0.0',
what = 'VariableFeatures(selection.method = )',
with = 'VariableFeatures(method = )'
)
method <- selection.method
}
assay <- assay %||% SeuratObject::DefaultAssay(object = object)
return(SeuratObject::VariableFeatures(
object = object[[assay]],
method = method,
nfeatures = nfeatures,
layer = layer,
simplify = simplify,
...
))
}
#' @return \code{VariableFeatures}: a vector of the variable features
#'
#' @rdname VariableFeatures
#' @export VariableFeatures
#'
#'
VariableFeatures <- function(object, method = NULL, ...) {
UseMethod(generic = 'VariableFeatures', object = object)
}
#' @param value A character vector of variable features
#'
#' @rdname VariableFeatures
#' @export VariableFeatures<-
#'
"VariableFeatures<-" <- function(object, ..., value) {
UseMethod(generic = 'VariableFeatures<-', object = object)
}
#' @title Access assays in Hummus_Object (based on Seurat)
#' @method [[ Hummus_Object
#' @name [[<-,Hummus_Object
#' @export
#' @aliases [[<-.Hummus_Object \S4method{[[<-}{Hummus_Object,character,missing,Assay}
#'
"[[.Hummus_Object" <- function(x, i = missing_arg(), ..., drop = FALSE, na.rm = FALSE) {
md <- slot(object = x, name = 'assays')
if (rlang::is_missing(x = i)) {
return(md)
} else if (is.null(x = i)) {
return(NULL)
} else if (!length(x = i)) {
return(data.frame(row.names = row.names(x = md)))
}
# Correct invalid `i`
meta.cols <- names(x = md)
if (rlang::is_bare_integerish(x = i)) {
if (all(i > length(x = meta.cols))) {
abort(message = paste(
"Invalid integer indexing:",
"all integers greater than the number of meta columns"
))
}
i <- meta.cols[as.integer(x = i[i <= length(x = meta.cols)])]
}
if (!is.character(x = i)) {
abort(message = "'i' must be a character vector")
}
# Determine if we're pulling cell-level meta data
# or a sub-object
slot.use <- if (length(x = i) == 1L) {
SeuratObject::.FindObject(object = x, name = i)
} else {
NULL
}
# Pull cell-level meta data
if (is.null(x = slot.use)) {
i <- tryCatch(
expr = arg_match(arg = i, values = meta.cols, multiple = TRUE),
error = function(e) {
#error message that indicates which colnames not found
abort(
message = paste(
paste(sQuote(x = setdiff(x = i, y = meta.cols)), collapse = ', '),
"not found in this HuMMuS object\n",
e$body
),
call = rlang::caller_env(n = 4L)
)
}
)
# Pull the cell-level meta data
data.return <- md[, i, drop = FALSE, ...]
# If requested, remove NAs
if (isTRUE(x = na.rm)) {
idx.na <- apply(X = is.na(x = data.return), MARGIN = 1L, FUN = all)
data.return <- data.return[!idx.na, , drop = FALSE]
} else {
idx.na <- rep_len(x = FALSE, length.out = ncol(x = x))
}
# If requested, coerce to a vector
if (isTRUE(x = drop)) {
data.return <- unlist(x = data.return, use.names = FALSE)
names(x = data.return) <- rep.int(
x = colnames(x = x)[!idx.na],
times = length(x = i)
)
}
return(data.return)
}
# Pull a sub-object
return(slot(object = x, name = slot.use)[[i]])
}
setMethod("show", "Hummus_Object",
function(object) {
#object <- SeuratObject::UpdateSlots(object = object)
assays <- SeuratObject::.FilterObjects(object = object,
classes.keep = "Assay")
nfeatures <- sum(vapply(
X = assays,
FUN = function(x) {
return(nrow(x = object[[x]]))
},
FUN.VALUE = integer(length = 1L)
))
num.assays <- length(x = assays)
cat("Hummus object containing a multilayer object :\n")
show(object@multilayer)
cat('\n\nAnd a Seurat object :\n\n')
cat(
nfeatures,
"features across",
ncol(x = object),
"samples within",
num.assays,
ifelse(test = num.assays == 1, yes = "assay", no = "assays"),
"\n"
)
cat(
"Active assay:",
SeuratObject::DefaultAssay(object = object),
paste0('(', nrow(x = object), " features, ",
length(x = SeuratObject::VariableFeatures(object = object))," variable features)")
)
other.assays <- assays[assays != SeuratObject::DefaultAssay(object = object)]
if (length(x = other.assays) > 0) {
cat(
'\n',
length(x = other.assays),
'other',
ifelse(test = length(x = other.assays) == 1, yes = 'assay', no = 'assays'),
'present:',
strwrap(x = paste(other.assays, collapse = ', '))
)
}
reductions <- SeuratObject::.FilterObjects(object = object, classes.keep = 'DimReduc')
if (length(x = reductions) > 0) {
cat(
'\n',
length(x = reductions),
'dimensional',
ifelse(test = length(x = reductions) == 1, yes = 'reduction', no = 'reductions'),
'calculated:',
strwrap(x = paste(reductions, collapse = ', '))
)
}
fovs <- SeuratObject::.FilterObjects(object = object, classes.keep = 'FOV')
if (length(x = fovs)) {
cat(
'\n',
length(x = fovs),
'spatial',
ifelse(test = length(x = fovs) == 1L, yes = 'field', no = 'fields'),
'of view present:',
strwrap(x = paste(fovs, sep = ', '))
)
}
images <- SeuratObject::.FilterObjects(object = object, classes.keep = 'SpatialImage')
images <- setdiff(x = images, y = fovs)
if (length(x = images)) {
cat(
'\n',
length(x = images),
ifelse(test = length(x = images) == 1L, yes = 'image', no = 'images'),
'present:',
strwrap(x = paste(images, collapse = ', '))
)
}
cat('\n')
}
)
#' @title Save multilayer object files in a hierarchical structure on disk
#'
#' @description Save multilayer files from a Hummus_Object
#' in a hierarchical structure on disk, inside a folder specified through
#' folder_name
#'
#' @param hummus A hummus object
#' @param folder_name The name of the folder to save the multilayer
#' @param verbose (integer) - Display function messages. Set to 0 for no
#' message displayed, >= 1 for more details.
#' @param suffix The suffix of the files to save. Default: ".tsv"
#'
#' @return Nothing, but create a folder containing the multilayer object files
#' @export
#'
#' @examples folder_name = "multilayer"
#' save_multilayer(hummus = hummus, folder_name = "multilayer")
#'
save_multilayer <- function(
hummus,
folder_name,
verbose = TRUE,
suffix = ".tsv"
) {
multiplex_folder <- "multiplex"
bipartite_folder <- "bipartite"
seed_folder <- "seed"
config_folder <- "config"
dir.create(folder_name)
dir.create(paste0(folder_name, "/", multiplex_folder))
dir.create(paste0(folder_name, "/", bipartite_folder))
dir.create(paste0(folder_name, "/", seed_folder))
dir.create(paste0(folder_name, "/", config_folder))
# For each multiplex, create a subfolder of multiplex,
# and save its networks inside
for (multiplex_name in names(hummus@multilayer@multiplex)){
dir.create(paste0(folder_name, "/", multiplex_folder, "/", multiplex_name))
print(hummus@multilayer@multiplex[[multiplex_name]])
for (network_name in names(hummus@multilayer@multiplex[[multiplex_name]]@networks)){
print(paste(multiplex_name, network_name))
write.table(hummus@multilayer@multiplex[[multiplex_name]]@networks[[network_name]],
col.names = FALSE, row.names = FALSE, quote = FALSE, sep = "\t",
file = paste0(folder_name, "/",
multiplex_folder, "/",
multiplex_name, "/", network_name, suffix))
}
}
# save bipartite networks
for (bipartite in names(hummus@multilayer@bipartites)){
write.table(hummus@multilayer@bipartites[[bipartite]]@network, sep = "\t",
col.names = FALSE, row.names = FALSE, quote = FALSE,
file = paste0(folder_name, "/",
bipartite_folder, "/",
bipartite, ".tsv"))
}
}
#' @title Add a network to a multiplex, a multilayer or an hummus object
#'
#' @description Add a network to a multiplex, a multilayer or an hummus object
#'
#' @param object A multiplex, a multilayer or an hummus object
#' @param network A network (edge list)
#' @param network_name The name of the network
#' @param multiplex_name The name of the multiplex. Default: NULL if object is a
#' multiplex already only
#' @param directed Logical indicating if the network is directed. Default: FALSE
#' @param weighted Logical indicating if the network is weighted. Default: FALSE
#' @param verbose (integer) - Display function messages. Set to 0 for no
#' message displayed, >= 1 for more details.
#'
#' @return A multiplex, a multilayer or an hummus object with the added network
#' @export
#'
#' @examples hummus <- add_network(
#' object = hummus,
#' network = atac_peak_network,
#' network_name = network_name,
#' multiplex_name = multiplex_name,
#' weighted = TRUE,
#' directed = FALSE)
#'
add_network <- function(
object,
network,
network_name,
multiplex_name = NULL,
directed = FALSE,
weighted = FALSE,
verbose = 1) {
# Check if object is a multiplex, a multilayer or an hummus object
if (inherits(object, "multiplex")) {
multiplex <- object
} else if (inherits(object, "multilayer") ) {
# Check if multiplex_name is NULL
if (is.null(multiplex_name)) {
stop("You need to specify the multiplex name.")
}
# Check if multiplex_name already exists
if (!(multiplex_name %in% names(object@multiplex))) {
if (verbose > 0) {
cat("\tCreating new multiplex : ", multiplex_name, "\n")
}
# Create new multiplex if not
object@multiplex[[multiplex_name]] <- new("multiplex")
}
# Get working multiplex
multiplex <- object@multiplex[[multiplex_name]]
} else if (inherits(object, "Hummus_Object")) {
# Check if multiplex_name is NULL
if (is.null(multiplex_name)) {
stop("You need to specify the multiplex name.")
}
# Check if multiplex_name already exists
if (!(multiplex_name %in% names(object@multilayer@multiplex))) {
if (verbose > 0) {
cat("\tCreating new multiplex : ", multiplex_name, "\n")
}
# Create new multiplex if not
object@multilayer@multiplex[[multiplex_name]] <- new("multiplex")
}
# Get working multiplex
multiplex <- object@multilayer@multiplex[[multiplex_name]]
} else {
stop("Object is not a multiplex, a multilayer nor an hummus object.: ", class(object))
}
# Check if network name already exists in the multiplex
if (network_name %in% names(multiplex@networks)) {
stop("Network name already exists in the multiplex.")
}
# Check if there is features in common
features <- unique(c(unique(network[, 1]), unique(network[, 2])))
if (length(intersect(features, multiplex@features)) == 0
&& length(multiplex@features) != 0) {
stop(cat("There is no features in common.",
"Check if there is a mistake in the features names",
" or if you want to create a new multiplex instead."))
}
# Add network
multiplex@networks[[network_name]] <- network
multiplex@features <- unique(c(multiplex@features, features))
multiplex@directed[[network_name]] <- directed
multiplex@weighted[[network_name]] <- weighted
# Return object
if (inherits(object, "multiplex")) {
return(multiplex)
} else if (inherits(object, "multilayer")) {
object@multiplex[[multiplex_name]] <- multiplex
return(object)
} else if (inherits(object, "Hummus_Object")) {
object@multilayer@multiplex[[multiplex_name]] <- multiplex
return(object)
}
}
#' @title Wrapper function to save a network or not
#'
#' @description Wrapper function to save a network or not in a file according
#' to the store_network parameter. If store_network is TRUE, the network is
#' saved in the output_file.
#'
#' @param network A network (edge list)
#' @param store_network Logical indicating if the network should be saved
#' @param output_file The name of the file to save the network
#' @param verbose (integer) - Display function messages. Set to 0 for no
#' message displayed, >= 1 for more details.
#'
#' @return Nothing, but save the network in a file if store_network is TRUE
#' @export
#'
#' @examples network <- read.table("network.tsv", header = TRUE, sep = "\t")
#' store_network(network = network,
#' store_network = TRUE,
#' output_file = "network.tsv",
#' verbose = 1)
#'
store_network <- function(
network,
store_network,
output_file,
verbose = 1) {
if (store_network) {
if (is.null(output_file)) {
stop("Please provide an output file name",
" if you want to store the network.")
}
if (verbose > 0) {
cat("\tStoring network in file : ", output_file, "\n")
}
write.table(network,
output_file,
col.names = TRUE,
row.names = FALSE,
quote = FALSE,
sep = "\t")
}
}