Switch to unified view

a b/man/compute_gene_network.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/layers.R
3
\name{compute_gene_network}
4
\alias{compute_gene_network}
5
\title{Compute gene netwok from scRNA-seq data}
6
\usage{
7
compute_gene_network(
8
  hummus,
9
  gene_assay = "RNA",
10
  tfs = NULL,
11
  method = "GENIE3",
12
  multiplex_name = NULL,
13
  network_name = NULL,
14
  store_network = FALSE,
15
  output_file = NULL,
16
  threshold = 0,
17
  number_cores = 1,
18
  verbose = 1
19
)
20
}
21
\arguments{
22
\item{hummus}{(Hummus_Object) - Hummus object}
23
24
\item{gene_assay}{(character) - Name of the assay containing the gene
25
expression data.}
26
27
\item{tfs}{vector(character) - List of tfs considered. If NULL, all TFs with
28
motifs in the hummus object are used.}
29
30
\item{method}{(character) - Method used to infer network edges.
31
\itemize{
32
\item \code{'Genie3'} - Use tree random forest to infer regulatory networks.
33
\item \code{'Other method'} - TO DO.
34
}}
35
36
\item{multiplex_name}{(character) - Name of the multiplex to add the network
37
to. Default is \code{'RNA'}.}
38
39
\item{network_name}{(character) - Name of the network in the multiplex to
40
add the network to. Default is \code{'RNA_network'}.}
41
42
\item{store_network}{(bool) - Save the network directly (\code{TRUE},
43
default) or return without saving on disk (\code{FALSE}).}
44
45
\item{output_file}{(character) - Name of the output_file
46
(if store_network == \code{TRUE}).}
47
48
\item{threshold}{(interger, default 0) - Minimal threshold
49
to select tf-gene edges.}
50
51
\item{number_cores}{(interger, default 1) - Number of thread that should be
52
used for the parallelizable methods.}
53
54
\item{verbose}{(integer) - Display function messages. Set to 0 for no
55
message displayed, >= 1 for more details.}
56
}
57
\value{
58
(data.frame) - Return list of network interactions between genes
59
}
60
\description{
61
This function will create a network from rna data (or in theory any data
62
wtih genes as features).
63
Different method should be implemented at some point (any suggestion is welcomed ! :) ),
64
for now Genie3 is still the reference and only method available
65
}
66
\details{
67
Method descriptions :
68
\enumerate{
69
\item Genie3
70
Use tree random forest to infer regulatory networks :
71
https://bioconductor.org/packages/release/bioc/html/GENIE3.html
72
}
73
}
74
\examples{
75
hummus <- compute_gene_network(
76
                               hummus,
77
                               gene_assay = "RNA",
78
                               method = "GENIE3",
79
                               verbose = 1,
80
                               number_cores = 8,
81
                               store_network = FALSE)
82
83
}