|
a |
|
b/man/compute_gene_network.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/layers.R |
|
|
3 |
\name{compute_gene_network} |
|
|
4 |
\alias{compute_gene_network} |
|
|
5 |
\title{Compute gene netwok from scRNA-seq data} |
|
|
6 |
\usage{ |
|
|
7 |
compute_gene_network( |
|
|
8 |
hummus, |
|
|
9 |
gene_assay = "RNA", |
|
|
10 |
tfs = NULL, |
|
|
11 |
method = "GENIE3", |
|
|
12 |
multiplex_name = NULL, |
|
|
13 |
network_name = NULL, |
|
|
14 |
store_network = FALSE, |
|
|
15 |
output_file = NULL, |
|
|
16 |
threshold = 0, |
|
|
17 |
number_cores = 1, |
|
|
18 |
verbose = 1 |
|
|
19 |
) |
|
|
20 |
} |
|
|
21 |
\arguments{ |
|
|
22 |
\item{hummus}{(Hummus_Object) - Hummus object} |
|
|
23 |
|
|
|
24 |
\item{gene_assay}{(character) - Name of the assay containing the gene |
|
|
25 |
expression data.} |
|
|
26 |
|
|
|
27 |
\item{tfs}{vector(character) - List of tfs considered. If NULL, all TFs with |
|
|
28 |
motifs in the hummus object are used.} |
|
|
29 |
|
|
|
30 |
\item{method}{(character) - Method used to infer network edges. |
|
|
31 |
\itemize{ |
|
|
32 |
\item \code{'Genie3'} - Use tree random forest to infer regulatory networks. |
|
|
33 |
\item \code{'Other method'} - TO DO. |
|
|
34 |
}} |
|
|
35 |
|
|
|
36 |
\item{multiplex_name}{(character) - Name of the multiplex to add the network |
|
|
37 |
to. Default is \code{'RNA'}.} |
|
|
38 |
|
|
|
39 |
\item{network_name}{(character) - Name of the network in the multiplex to |
|
|
40 |
add the network to. Default is \code{'RNA_network'}.} |
|
|
41 |
|
|
|
42 |
\item{store_network}{(bool) - Save the network directly (\code{TRUE}, |
|
|
43 |
default) or return without saving on disk (\code{FALSE}).} |
|
|
44 |
|
|
|
45 |
\item{output_file}{(character) - Name of the output_file |
|
|
46 |
(if store_network == \code{TRUE}).} |
|
|
47 |
|
|
|
48 |
\item{threshold}{(interger, default 0) - Minimal threshold |
|
|
49 |
to select tf-gene edges.} |
|
|
50 |
|
|
|
51 |
\item{number_cores}{(interger, default 1) - Number of thread that should be |
|
|
52 |
used for the parallelizable methods.} |
|
|
53 |
|
|
|
54 |
\item{verbose}{(integer) - Display function messages. Set to 0 for no |
|
|
55 |
message displayed, >= 1 for more details.} |
|
|
56 |
} |
|
|
57 |
\value{ |
|
|
58 |
(data.frame) - Return list of network interactions between genes |
|
|
59 |
} |
|
|
60 |
\description{ |
|
|
61 |
This function will create a network from rna data (or in theory any data |
|
|
62 |
wtih genes as features). |
|
|
63 |
Different method should be implemented at some point (any suggestion is welcomed ! :) ), |
|
|
64 |
for now Genie3 is still the reference and only method available |
|
|
65 |
} |
|
|
66 |
\details{ |
|
|
67 |
Method descriptions : |
|
|
68 |
\enumerate{ |
|
|
69 |
\item Genie3 |
|
|
70 |
Use tree random forest to infer regulatory networks : |
|
|
71 |
https://bioconductor.org/packages/release/bioc/html/GENIE3.html |
|
|
72 |
} |
|
|
73 |
} |
|
|
74 |
\examples{ |
|
|
75 |
hummus <- compute_gene_network( |
|
|
76 |
hummus, |
|
|
77 |
gene_assay = "RNA", |
|
|
78 |
method = "GENIE3", |
|
|
79 |
verbose = 1, |
|
|
80 |
number_cores = 8, |
|
|
81 |
store_network = FALSE) |
|
|
82 |
|
|
|
83 |
} |