Switch to unified view

a b/man/bipartite_tfs2peaks.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/bipartites.R
3
\name{bipartite_tfs2peaks}
4
\alias{bipartite_tfs2peaks}
5
\title{Compute links between TFs and DNA regions (ATAC peaks)}
6
\usage{
7
bipartite_tfs2peaks(
8
  hummus_object,
9
  tf_expr_assay = "RNA",
10
  peak_assay = "peaks",
11
  tf_multiplex_name = NULL,
12
  peak_multiplex_name = NULL,
13
  genome,
14
  store_network = FALSE,
15
  output_file = NULL,
16
  verbose = 1,
17
  bipartite_name = "tf_peak"
18
)
19
}
20
\arguments{
21
\item{hummus_object}{(hummus_object) - Hummus object.}
22
23
\item{tf_expr_assay}{(character) - Name of assay containing the TF expression
24
data. If NULL, all TFs with a motif are used. Default: "RNA".}
25
26
\item{peak_assay}{(character) - Name of the assay containing the DNA regions
27
(ATAC peaks). Default: "peaks".}
28
29
\item{tf_multiplex_name}{(character) - Name of multiplex containing the TFs.
30
If NULL, the name of the TF assay is used.}
31
32
\item{peak_multiplex_name}{(character) - Name of the multiplex containing the
33
DNA regions (ATAC peaks). If NULL, the name of the peak assay is used.}
34
35
\item{genome}{(BSgenome object) - Reference genome.}
36
37
\item{store_network}{(bool) - Save the bipartite directly
38
(\code{TRUE}, default) or return without saving on disk (\code{FALSE}).}
39
40
\item{output_file}{(character) - Name of the output_file
41
(if store_bipartite == \code{TRUE}). Default: NULL.}
42
43
\item{verbose}{(integer) Display function messages.
44
Set to 0 for no message displayed, >= 1 for more details. Default: 1.}
45
46
\item{bipartite_name}{(character) - Name of bipartite. Default: "tf_peak".}
47
}
48
\value{
49
hummus_object (hummus_object) - Hummus object with TF-peak bipartite
50
added to the multilayer slot
51
}
52
\description{
53
Compute and add bipartite between TFs and DNA regions to hummus object.
54
Links are computed based on the binding motifs of TFs and their locations
55
on a reference genome.
56
Currently based on Signac AddMotifs function (--> motifmachR, itself based on
57
MOODs algorithm).
58
}
59
\examples{
60
hummus <- bipartite_tfs2peaks(
61
                     hummus_object = hummus,
62
                     tf_expr_assay = "RNA",
63
                     peak_assay = "peaks",
64
                     tf_multiplex_name = "TF",
65
                     peak_multiplex_name = "peaks",
66
          genome = BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38,
67
                     store_network = FALSE,
68
                     verbose = 1,
69
                     bipartite_name = "tf_peak")
70
}