[14cb68]: / modules / network_propagation.py

Download this file

339 lines (290 with data), 17.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
Implementation of tissue-specific graph walk with RWR
"""
import sys
import pandas as pd
import numpy as np
import networkx as nx
import argparse
import sklearn.preprocessing
from scipy.stats import spearmanr
# convergence criterion - when vector L1 norm drops below 10^(-6)
# (this is the same as the original RWR paper)
CONV_THRESHOLD = 0.000001
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def isNum(x):
try:
float(x)
return True
except:
return False
class Walker:
""" Class for multi-graph walk to convergence, using matrix computation.
Random walk with restart (RWR) algorithm adapted from:
Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for
prioritization of candidate disease genes. The American Journal of Human
Genetics. 2008 Apr 11;82(4):949-58.
Attributes:
-----------
og_matrix (np.array) : The column-normalized adjacency matrix
representing the original graph LCC, with no
nodes removed
teleport_matrix (np.array): The column-normalized adjacency matrix
representing the graph LCC, which adds additional edges for teleport
restart_prob (float) : The probability of restarting from the source
node for each step in run_path (i.e. r in the
original Kohler paper RWR formulation)
normalize (bool) : Whether normalizing p0 to [0,1]
"""
def __init__(self, original_ppi, teleport_ppi, remove_nodes=[], constantWeight=False, absWeight=False, addBidirectionEdge=False):
self._build_matrices(original_ppi, teleport_ppi, remove_nodes, constantWeight, absWeight, addBidirectionEdge)
self.dic_node2idx = dict([(node, i) for i, node in enumerate(self.OG.nodes())])
def run_exp(self, seed2weight, restart_prob, teleport_prob=0.5, normalize=False, node_list=[]):
#NP for one sample
""" Run a multi-graph random walk experiment, and print results.
Parameters:
-----------
seed2weight (dictionary): The source node indices (i.e. a list of Entrez
gene IDs)
restart_prob (float): As above
teleport_prob (float): As above
normalize (bool): As above
"""
self.restart_prob = restart_prob
self.teleport_prob = teleport_prob
# set up the starting probability vector
criteria_p=self._set_up_p0(seed2weight)
#mask TG with 0
p_0 = self._set_up_p0(seed2weight)
if normalize == True:
p_0 /= np.sum(p_0) # normalize
diff_norm = 1
# this needs to be a deep copy, since we're reusing p_0 later
p_t = np.copy(p_0)
# arr_p includes all p_t for tracing
arr_p = np.empty((len(p_t),1))
arr_p[:,0] = p_t
while (diff_norm > CONV_THRESHOLD):
# first, calculate p^(t + 1) from p^(t)
p_t_1 = self._calculate_next_p(p_t, p_0)
if normalize == True:
p_t_1 /= np.sum(p_t_1) # normalize
# calculate L1 norm of difference between p^(t + 1) and p^(t),
# for checking the convergence condition
diff_norm = np.linalg.norm(np.subtract(p_t_1, p_t), 1)
# then, set p^(t) = p^(t + 1), and loop again if necessary
# no deep copy necessary here, we're just renaming p
p_t = p_t_1
# append p_t to arr_p
arr_p = np.c_[arr_p, p_t]
if arr_p.shape[1] >= 50000:
break
print('%d iterated'%(arr_p.shape[1]))
# now, generate and print a rank list from the final prob vector
if node_list:#if I want to get propagation result only from selected node list
gene_idx = dict(zip(self.OG.nodes(), range(len(self.OG.nodes()))))
output = []
for node in node_list:
i = gene_idx[node]
output.append([node,arr_p[i,-1],arr_p[i,:].tolist()])
return output
#return list(self._generate_prob_list(arr_p, node_list))
else:
gene_idx = dict(zip(self.OG.nodes(), range(len(self.OG.nodes()))))
output = []
for node in sorted(self.OG.nodes()):
i = gene_idx[node]
output.append([node,arr_p[i,-1],arr_p[i,:].tolist()])
return output
#return list(self._generate_rank_list(arr_p))
def _generate_prob_list(self, p_t, node_list):
gene_probs = dict(zip(self.OG.nodes(), p_t.tolist()))
for node in node_list:
yield node, gene_probs[node]
def _generate_rank_list(self, p_t):
""" Return a rank list, generated from the final probability vector.
Gene rank list is ordered from highest to lowest probability.
"""
gene_probs = zip(self.OG.nodes(), p_t.tolist())
# sort by probability (from largest to smallest), and generate a
# sorted list of Gene IDs
for s in sorted(gene_probs, key=lambda x: x[0]):
yield s[0], s[1]
def _calculate_next_p(self, p_t, p_0):
""" Calculate the next probability vector. """
if self.teleport_prob is not None:
epsilon = np.squeeze(np.asarray(np.dot(self.og_matrix, p_t)))
no_restart = epsilon * (1 - self.restart_prob)
epsilon_teleport = np.squeeze(np.asarray(np.dot(self.tg_matrix, p_t)))
else:
epsilon = np.squeeze(np.asarray(np.dot(self.og_matrix, p_t)))
no_restart = epsilon * (1 - self.restart_prob)
restart = p_0 * self.restart_prob
return np.add(no_restart, restart)*(1-self.teleport_prob) + epsilon_teleport*self.teleport_prob
def _set_up_p0(self, seed2weight,set_TF=None):
""" Set up and return the 0th probability vector. """
p_0 = [0] * self.OG.number_of_nodes()
weightSum = 0.0
for seed, weight in seed2weight.items():
if seed not in self.dic_node2idx:
#print "Source node %s is not in original graph. It is ignored."%(seed)
continue
weightSum += seed2weight[seed]
for seed, weight in seed2weight.items():
if seed not in self.dic_node2idx:
continue
idx = self.dic_node2idx[seed]
p_0[idx] = seed2weight[seed]
#p_0[idx] = seed2weight[seed]/weightSum
return np.array(p_0)
def _build_matrices(self, original_ppi, teleport_ppi, remove_nodes, constantWeight, absWeight, addBidirectionEdge):
""" Build column-normalized adjacency matrix for each graph.
NOTE: these are column-normalized adjacency matrices (not nx
graphs), used to compute each p-vector
"""
original_graph = self._build_og(original_ppi, constantWeight, absWeight, addBidirectionEdge)
if remove_nodes:
# remove nodes, then get the largest connected component once
# the nodes are removed
original_graph.remove_nodes_from(remove_nodes)
original_graph = max(
nx.connected_component_subgraphs(original_graph),
key=len)
self.OG = original_graph
og_not_normalized = nx.to_numpy_matrix(original_graph)
self.og_matrix = self._normalize_rows(np.transpose(og_not_normalized))
teleport_graph = self._build_og(teleport_ppi, constantWeight, absWeight, addBidirectionEdge)
if remove_nodes:
# remove nodes, then get the largest connected component once
# the nodes are removed
teleport_graph.remove_nodes_from(remove_nodes)
teleport_graph = max(
nx.connected_component_subgraphs(original_graph),
key=len)
self.TG = teleport_graph ##nx object
tg_tmp = nx.to_pandas_adjacency(teleport_graph)
tg_df = pd.DataFrame(np.zeros(og_not_normalized.shape), index=original_graph.nodes, columns=original_graph.nodes)
tg_df.update(tg_tmp)
tg_not_normalized = tg_df.to_numpy()
self.tg_matrix = self._normalize_rows(np.transpose(tg_not_normalized))
def _build_og(self, original_ppi, constantWeight=False, absWeight=False, addBidirectionEdge=False):
""" Build the original graph, without any nodes removed. """
try:
graph_fp = open(original_ppi, 'r')
except IOError:
sys.exit("Could not open file: {}".format(original_ppi))
G = nx.DiGraph()
edge_list = []
# parse network input
for line in graph_fp.readlines():
split_line = line.rstrip().split('\t')
#if len(split_line) > 3:
# # assume input graph is in the form of HIPPIE network
# edge_list.append((split_line[1], split_line[3],
# float(split_line[4])))
if len(split_line) < 3:
# assume input graph is a simple edgelist without weights
#edge_list.append((split_line[0], split_line[1], float(1)))
weight = 1.0
else:
# assume input graph is a simple edgelist with weights
#edge_list.append((split_line[0], split_line[1],
# float(split_line[2])))
weight = float(split_line[2])
if constantWeight:
weight = 1.0
if absWeight:
weight = abs(weight)
#edge_list.append((split_line[0], split_line[1], float(weight)))
edge_list.append((split_line[0], split_line[1], 1))
if addBidirectionEdge:
edge_list.append((split_line[1], split_line[0], float(weight)))
G.add_weighted_edges_from(edge_list)
graph_fp.close()
return G
def _normalize_cols(self, matrix):
""" Normalize the columns of the adjacency matrix """
return sklearn.preprocessing.normalize(matrix, norm='l1', axis=0)
def _normalize_rows(self, matrix):
""" Normalize the rows of the adjacency matrix """
return sklearn.preprocessing.normalize(matrix, norm='l1', axis=1)
def main_propagation(argv):
# set up argument parsing
parser = argparse.ArgumentParser(usage='''\
python %(prog)s input_graph teleport_graph seed -o myout -e 0.01
''')
parser.add_argument('input_graph', help='Original graph input file, in edge list format')
parser.add_argument('teleport_graph', help='Teleport graph input file, in edge list format')
parser.add_argument('seed', help='Seed file, to pull start nodes from')
parser.add_argument('-o',required=True, help='outfile')
parser.add_argument('-e', '--restart_prob', type=float, default=0.1, help='Restart probability for random walk')
parser.add_argument('--teleport_prob',type=float, default=0.5)
parser.add_argument('-constantWeight', default='False', choices=['True', 'False'], help='Whether constant weight or not')
parser.add_argument('-absoluteWeight', default='False', choices=['True', 'False'], help='Whether absolute weight or not')
parser.add_argument('-addBidirectionEdge', default='False', choices=['True', 'False'], help='Whether adding bidirection edges')
parser.add_argument('-normalize', default='False', choices=['True', 'False'], help='Whether normalizing p0 or not')
args = parser.parse_args()
try:
fp = open(args.seed, "r")
except IOError:
sys.exit("Error opening file {}".format(args.seed))
lst_columnName=['0']
lst_seed=[]
lst_weights=[]
for line in fp.readlines():
s = line.rstrip().split()
if len(s) >= 2:
if not isNum(s[1]):#header
lst_columnName=s[1:]
else:
lst_columnName=[str(i) for i in np.arange(len(s[1:]))+1]
seed = s[0]
if len(s) == 1: #if only the gene lists are given, set weights to 1
weights = [1.0]
if len(s) >= 2:
weights = list(map(float,s[1:]))
lst_seed.append(seed)
lst_weights.append(weights)
arr_weights=np.array(lst_weights)
fp.close()
# run the experiments, and write a rank list to stdout
dic_node2weights={}
set_nodes=set()
lst_wk = []
wk = Walker(args.input_graph, args.teleport_graph, constantWeight=str2bool(args.constantWeight), absWeight=str2bool(args.absoluteWeight), addBidirectionEdge=str2bool(args.addBidirectionEdge))#1 wk for 1 input graph
set_nodes |= set(wk.OG.nodes())
lst_wk.append(wk)
column_name=[]
for idx, wk in enumerate(lst_wk):#if there's multiple input graphs
for j in range(arr_weights.shape[1]): #iterate (# samples) times
column_name.append(lst_columnName[j])
if sum(np.abs(arr_weights[:,j])) == 0.0:
for node in set_nodes:
if node not in dic_node2weights:
dic_node2weights[node]=[]
dic_node2weights[node].append(0.0)
continue
seed2weight=dict()
for ii in range(len(lst_seed)):
seed2weight[lst_seed[ii]]=arr_weights[ii,j]
lst_node_weight = wk.run_exp(seed2weight, args.restart_prob, normalize=str2bool(args.normalize))
set_tmpNodes=set()
for node, weight, all_weight in lst_node_weight:
if node not in dic_node2weights:
dic_node2weights[node]=[]
dic_node2weights[node].append(weight)
set_tmpNodes.add(node)
for node in set_nodes-set_tmpNodes:
if node not in dic_node2weights:
dic_node2weights[node]=[]
dic_node2weights[node].append(0.0)
OF=open(args.o,'w')
#OF.write('Gene\t'+'\t'.join(column_name)+'\n')
for node, weights in dic_node2weights.items():
#OF.write('\t'.join(map(str,[node]+all_weight))+'\n')
OF.write('\t'.join(map(str,[node]+weights))+'\n')
OF.flush()
OF.close()
if __name__ == '__main__':
main_propagation(sys.argv)