[14cb68]: / modules / biomarker.py

Download this file

189 lines (150 with data), 8.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import sys
sys.path.insert(1, 'modules')
import argparse
import networkx as nx
import pandas as pd
import torch
import os
import torch_geometric
from GCN_transformer import *
from prediction_model import *
def resurrect_test_acc(test_iterator, PATH, num_nodes, dim_node_features):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = subtype_classifier(dim_node_features, 1, num_nodes, 8, 0.2).to(device)
model.load_state_dict(torch.load(PATH))
model.eval()
att_list = []
y_li , true_y_li = [],[]
for data in test_iterator:
data = data.to(device)
out, att_edge, att_weights = model(data)
att_adj = torch.squeeze(torch_geometric.utils.to_dense_adj(att_edge, edge_attr=att_weights)).detach().numpy()
att_list.append(att_adj)
y = out.cpu().detach().flatten().tolist()
true_y = data.y.cpu().detach().flatten().tolist()
y_li.extend(y)
true_y_li.extend(true_y)
from sklearn import metrics
fpr,tpr,thres_roc = metrics.roc_curve(true_y_li,y_li,pos_label=1)
precision,recall,thres_pr = metrics.precision_recall_curve(true_y_li,y_li,pos_label=1)
auprc = metrics.auc(recall,precision)
auroc = metrics.auc(fpr,tpr)
print(metrics.accuracy_score(true_y_li,np.array(y_li)>0.5))
mean_att = np.mean(sum(att_list)/len(att_list), axis=2)
#mean_att = sum(att_list)/len(att_list)
return auroc, auprc, model, mean_att, true_y_li
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-label',help="")
parser.add_argument('-train_samples')
parser.add_argument('-test_samples')
parser.add_argument('-model')
parser.add_argument('-t')
parser.add_argument('-m')
parser.add_argument('-p')
parser.add_argument('-clin')
parser.add_argument('-nwk')
parser.add_argument('-propOut1')
parser.add_argument('-propOut2')
parser.add_argument('-K',type=int)
parser.add_argument('-att_thr',type=float)
parser.add_argument('-out')
args = parser.parse_args()
seed_everything(42)
#=============================Data=============================
transcriptome = pd.read_csv(args.t,sep='\t',index_col=0)
transcriptome.columns = transcriptome.columns.astype(int)
methylome= pd.read_csv(args.m,sep='\t',index_col=0)
methylome.columns = methylome.columns.astype(int)
proteome = pd.read_csv(args.p,sep='\t',index_col=0)
proteome.columns = proteome.columns.astype(int)
clinical_raw = pd.read_csv(args.clin,sep='\t',index_col=0)
dict_clinical = clinical_raw.reset_index().groupby(args.label)['SUBJNO'].apply(list).to_dict()
all_samples_clinical = list({v for i in dict_clinical.values() for v in i})
samples_common_omics = set.intersection(set(transcriptome.columns), set(methylome.columns), set(proteome.columns))
dict_clinical_r = clinical_raw.loc[:,args.label].to_dict()
train_samples = [int(l.strip()) for l in open(args.train_samples).readlines()]
test_samples = [int(l.strip()) for l in open(args.test_samples).readlines()]
#==============================GNN==============================
our_out1 = pd.read_csv(args.propOut1,sep='\t',names=['node','prop_score'],header=0).sort_values(by='prop_score',ascending=False)
our_out2 = pd.read_csv(args.propOut2,sep='\t',names=['node','prop_score'],header=0).sort_values(by='prop_score',ascending=False)
our_out_genes1 = our_out1.sort_values(by='prop_score',ascending=False)['node'].unique()
our_out_genes2 = our_out2.sort_values(by='prop_score',ascending=False)['node'].unique()
our_out_genes = list(set.union(set(our_out_genes1[:args.K]),set(our_out_genes2[:args.K])))
genes = our_out_genes
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
transcriptome_filt_raw = transcriptome.T.loc[list(set(transcriptome.T.index) & set(all_samples_clinical)),
transcriptome.T.columns.intersection(genes)]
methylome_filt_raw = methylome.T.loc[list(set(methylome.T.index) & set(all_samples_clinical)),
methylome.T.columns.intersection(genes)]
proteome_filt_raw = proteome.T.loc[list(set(proteome.T.index) & set(all_samples_clinical)),
proteome.T.columns.intersection(genes)]
transcriptome_filt = pd.DataFrame(scaler.fit_transform(transcriptome_filt_raw.T).T,
index=transcriptome_filt_raw.index,
columns=transcriptome_filt_raw.columns)
methylome_filt = pd.DataFrame(scaler.fit_transform(methylome_filt_raw.T).T,
index=methylome_filt_raw.index,
columns=methylome_filt_raw.columns)
proteome_filt = pd.DataFrame(scaler.fit_transform(proteome_filt_raw.T).T,
index=proteome_filt_raw.index,
columns=proteome_filt_raw.columns)
df_nwk = pd.read_csv(args.nwk,sep='\t',names=['g1','g2'])
G = nx.from_pandas_edgelist(df_nwk, source='g1', target='g2')
subgraph = G.subgraph(genes)
lcc_nodes = max(nx.connected_components(subgraph), key=len)
subgraph = subgraph.subgraph(lcc_nodes)
def processing_topology(graph):
'''
input: edgeList (source, target)
output: coo format for GNN # .tocoo() alone does not directly returns the coo format
'''
nodes = sorted(list(graph.nodes()))
adj_mx = np.array(nx.adjacency_matrix(graph, nodelist=nodes).todense())
edge_index = sparse_mx_to_torch_sparse_tensor(sparse.csr_matrix(adj_mx).tocoo())
return nodes, edge_index
nodes, edge_index = processing_topology(subgraph)
def imputed(df):
global train_samples
median = df.loc[list(set.intersection(set(df.index), set(train_samples))),:].mode().iloc[0,:].median()
return median
tr_ = imputed(transcriptome_filt)
m_ = imputed(methylome_filt)
p_ = imputed(proteome_filt)
data_list_test = []
for sample in all_samples_clinical:
x_tmp = []
for gene in nodes:
if (gene in transcriptome_filt.columns) and (sample in transcriptome_filt.index):
a = transcriptome_filt.loc[sample,gene]
else:
a = np.full(1,tr_)
if (gene in methylome_filt.columns) and (sample in methylome_filt.index):
b = methylome_filt.loc[sample,gene]
else:
b = np.full(1,m_)
if (gene in proteome_filt.columns) and (sample in proteome_filt.index):
c = proteome_filt.loc[sample,gene]
else:
c = np.full(1,p_)
all_data = list(np.c_[a,b,c])
x_tmp.append(all_data)
x_tmp_tensor = torch.tensor(np.array(x_tmp,dtype=np.float32)).view(-1,3)
if dict_clinical_r[sample]==1:
data = Data(x=x_tmp_tensor, y=torch.tensor([0]), edge_index=edge_index)
if dict_clinical_r[sample]==2:
data = Data(x=x_tmp_tensor, y=torch.tensor([1]), edge_index=edge_index)
if sample in test_samples:
data_list_test.append(data)
num_nodes = data_list_test[0].x.size()[0]
dim_node_features = data_list_test[0].x.size()[1]
auroc_ourBiomarker_GCN, auprc_ourBiomarker_GCN, model, mean_attr, labels = resurrect_test_acc(data_list_test, args.model, num_nodes, dim_node_features)
degrees = pd.DataFrame(subgraph.degree(nodes))[1].to_numpy()
attr = mean_attr * degrees
attention_df = pd.DataFrame(attr,index=nodes, columns=nodes)
li_important_pairs = [(attention_df.index[i], attention_df.columns[j]) for i,j in np.argwhere(attention_df.to_numpy() > args.att_thr)]
li_important_nodes = sum(li_important_pairs,())
nx_unionEdges = nx.from_pandas_edgelist(pd.DataFrame(li_important_pairs),source=0,target=1)
lcc_nodes = max(nx.connected_components(nx_unionEdges),key=len)
nx_unionEdges_lcc = nx_unionEdges.subgraph(lcc_nodes)
nx.to_pandas_edgelist(nx_unionEdges_lcc).to_csv(args.out, sep='\t',index=False)