[03aca1]: / modules / prediction_model.py

Download this file

331 lines (277 with data), 14.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import pandas as pd
import numpy as np
import argparse
import json
#### GCN #################
from GCN_transformer import *
import os.path as osp
import os
import random
import networkx as nx
from scipy import sparse
import torch
import torch_geometric
import torch.nn.functional as F
from torch.nn import Linear, BCEWithLogitsLoss
from torch_geometric import transforms as T
from torch_geometric.data import Data, Dataset, InMemoryDataset
from torch_geometric.datasets import PPI
from torch_geometric.loader import DataLoader
import torch_geometric.nn as geom_nn
from torch.utils.data import random_split
from torch_geometric.nn import GATConv, GraphConv, GCNConv
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
###########Dataset generation############
import argparse
import networkx as nx
import numpy as np
from scipy import sparse
import torch
import torch.nn.functional as F
from torch_geometric import transforms as T
from torch_geometric.data import Data, Dataset, InMemoryDataset
from torch_geometric.loader import DataLoader
from scipy.stats import zscore
from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler, Normalizer, RobustScaler, LabelEncoder
#======================================================================
def seed_everything(seed = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#torch.set_deterministic(True)
### Dataset generation
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor: necessary for 'edges -> coo' format conversion"""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.compat.long))
return indices
def processing_topology(graph):
'''
input: edgeList (source, target)
output: coo format for GNN # .tocoo() alone does not directly returns the coo format
'''
nodes = sorted(list(graph.nodes()))
adj_mx = np.array(nx.adjacency_matrix(graph, nodelist=nodes).todense())
edge_index = sparse_mx_to_torch_sparse_tensor(sparse.csr_matrix(adj_mx).tocoo())
return nodes, edge_index
class AsthmaDataset(InMemoryDataset):
def __init__(self, root, data_list=None, transform=None):
self.data_list = data_list
super().__init__(root, transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def processed_file_names(self):
return 'data.pt'
def process(self):
torch.save(self.collate(self.data_list), self.processed_paths[0])
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--label",'-l',dest='label')
parser.add_argument("-t")
parser.add_argument("-m")
parser.add_argument("-p")
parser.add_argument("-clin")
parser.add_argument("-train_samples")
parser.add_argument("-test_samples")
parser.add_argument("-featureSelection")
parser.add_argument("-propOut1")
parser.add_argument("-propOut2")
parser.add_argument("-DEG")
parser.add_argument("-DEP")
parser.add_argument("-K",type=int)
parser.add_argument("-exp_name")
parser.add_argument("-nwk")
parser.add_argument('-random_seed',type=int,default=1)
args = parser.parse_args()
torch.cuda.empty_cache()
random_seed = args.random_seed
seed_everything(random_seed+41)
if args.featureSelection=='ourBiomarker':
# Retrieve biomarker candidates
our_out1 = pd.read_csv(args.propOut1,sep='\t',names=['node','prop_score'],header=0).sort_values(by='prop_score',ascending=False)
our_out2 = pd.read_csv(args.propOut2,sep='\t',names=['node','prop_score'],header=0).sort_values(by='prop_score',ascending=False)
our_out_genes1 = our_out1.sort_values(by='prop_score',ascending=False)['node'].unique()
our_out_genes2 = our_out2.sort_values(by='prop_score',ascending=False)['node'].unique()
our_out_genes = list(set.union(set(our_out_genes1[:args.K]),set(our_out_genes2[:args.K])))
genes = our_out_genes
if args.featureSelection == 'DEG':
DEG_raw = pd.read_csv(args.DEG, sep='\t',names=['gene','adj.p-val','stats']).dropna()
DEGs = DEG_raw.sort_values(by='adj.p-val',ascending=True).loc[lambda x:x['adj.p-val']<0.05,:]['gene'].to_list()
genes = DEGs
if args.featureSelection == 'DEP':
DEP_raw = pd.read_csv(args.DEP, sep='\t',names=['gene','adj.p-val','stats']).dropna()
DEPs = DEP_raw.sort_values(by='adj.p-val',ascending=True).loc[lambda x:x['adj.p-val']<0.05,:]['gene'].to_list()
genes = DEPs
# Data preparation
label=args.label
transcriptome = pd.read_csv(args.t,sep='\t',index_col=0)
transcriptome.columns = transcriptome.columns.astype(int)
methylome= pd.read_csv(args.m,sep='\t',index_col=0)
methylome.columns = methylome.columns.astype(int)
proteome = pd.read_csv(args.p,sep='\t',index_col=0)
proteome.columns = proteome.columns.astype(int)
clinical_raw = pd.read_csv(args.clin,sep='\t',index_col=0)
dict_clinical = clinical_raw.reset_index().groupby(label)['SUBJNO'].apply(list).to_dict()
all_samples_clinical = {v for i in dict_clinical.values() for v in i}
samples_common_omics = set.intersection(set(transcriptome.columns), set(methylome.columns), set(proteome.columns))
train_samples = set([int(l.strip()) for l in open(args.train_samples).readlines()])
test_samples = set([int(l.strip()) for l in open(args.test_samples).readlines()])
dict_clinical_r = clinical_raw.loc[:,label].to_dict()
all_samples_omics_clinical = samples_common_omics.intersection(all_samples_clinical)
def clinical_label(x,dict_):
if x in dict_[1]:
return 'low'
elif x in dict_[2]:
return 'high'
else:
return 'None'
# normalize input data
scaler = MinMaxScaler()
transcriptome_filt_raw = transcriptome.T.loc[list(set(transcriptome.T.index) & set(all_samples_clinical)),
transcriptome.T.columns.intersection(genes)]
methylome_filt_raw = methylome.T.loc[list(set(methylome.T.index) & set(all_samples_clinical)),
methylome.T.columns.intersection(genes)]
proteome_filt_raw = proteome.T.loc[list(set(proteome.T.index) & set(all_samples_clinical)),
proteome.T.columns.intersection(genes)]
transcriptome_filt = pd.DataFrame(scaler.fit_transform(transcriptome_filt_raw.T).T,
index=transcriptome_filt_raw.index,
columns=transcriptome_filt_raw.columns)
methylome_filt = pd.DataFrame(scaler.fit_transform(methylome_filt_raw.T).T,
index=methylome_filt_raw.index,
columns=methylome_filt_raw.columns)
proteome_filt = pd.DataFrame(scaler.fit_transform(proteome_filt_raw.T).T,
index=proteome_filt_raw.index,
columns=proteome_filt_raw.columns)
########### Dataset generation for GCN #################
nwk = pd.read_csv(args.nwk,sep='\t',names=['g1','g2'])
G = nx.from_pandas_edgelist(nwk, source='g1', target='g2')
subgraph = G.subgraph(genes)
lcc_nodes = max(nx.connected_components(subgraph), key=len)
subgraph = subgraph.subgraph(lcc_nodes)
nodes, edge_index = processing_topology(subgraph)
def imputed_per_group(df):
global train_samples, dict_clinical, genes
group1 = df.loc[list(set.intersection(set(df.index), set(train_samples), set(dict_clinical[1]))),:].mode().iloc[0,:].median()
group2 = df.loc[list(set.intersection(set(df.index), set(train_samples), set(dict_clinical[2]))),:].mode().iloc[0,:].median()
return group1, group2
def imputed(df):
global train_samples
median = df.loc[list(set.intersection(set(df.index), set(train_samples))),:].mode().iloc[0,:].median()
return median
tr_1, tr_2 = imputed_per_group(transcriptome_filt)
m_1, m_2 = imputed_per_group(methylome_filt)
p_1, p_2 = imputed_per_group(proteome_filt)
tr_ = imputed(transcriptome_filt)
m_ = imputed(methylome_filt)
p_ = imputed(proteome_filt)
data_list_train = []
data_list_test = []
for sample in all_samples_clinical:
if sample in train_samples:
x_tmp = []
for gene in nodes:
if (gene in transcriptome_filt.columns) and (sample in transcriptome_filt.index):
a = transcriptome_filt.loc[sample,gene]
else:
a = np.full(1,tr_)
if (gene in methylome_filt.columns) and (sample in methylome_filt.index):
b = methylome_filt.loc[sample,gene]
else:
b = np.full(1,m_)
if (gene in proteome_filt.columns) and (sample in proteome_filt.index):
c = proteome_filt.loc[sample,gene]
else:
c = np.full(1,p_)
all_data = list(np.c_[a,b,c])
x_tmp.append(all_data)
x_tmp_tensor = torch.tensor(np.array(x_tmp,dtype=np.float32)).view(-1,3)
if dict_clinical_r[sample]==1:
data = Data(x=x_tmp_tensor, y=torch.tensor([0]), edge_index=edge_index)
if dict_clinical_r[sample]==2:
data = Data(x=x_tmp_tensor, y=torch.tensor([1]), edge_index=edge_index)
data_list_train.append(data)
if sample in test_samples:
x_tmp = []
for gene in nodes:
if (gene in transcriptome_filt.columns) and (sample in transcriptome_filt.index):
a = transcriptome_filt.loc[sample,gene]
else:
a = np.full(1,tr_)
if (gene in methylome_filt.columns) and (sample in methylome_filt.index):
b = methylome_filt.loc[sample,gene]
else:
b = np.full(1,m_)
if (gene in proteome_filt.columns) and (sample in proteome_filt.index):
c = proteome_filt.loc[sample,gene]
else:
c = np.full(1,p_)
all_data = list(np.c_[a,b,c])
x_tmp.append(all_data)
x_tmp_tensor = torch.tensor(np.array(x_tmp,dtype=np.float32)).view(-1,3)
if dict_clinical_r[sample]==1:
data = Data(x=x_tmp_tensor, y=torch.tensor([0]), edge_index=edge_index)
if dict_clinical_r[sample]==2:
data = Data(x=x_tmp_tensor, y=torch.tensor([1]), edge_index=edge_index)
data_list_test.append(data)
Dataset_name = "Dataset_minmaxSample_{}".format(args.exp_name)
Asthma_train = AsthmaDataset(Dataset_name, data_list_train)
Asthma_test = AsthmaDataset(Dataset_name+'.test', data_list_test)
### Train model
VALID_RATIO = 0.8
g = torch.Generator()
g.manual_seed(torch.initial_seed())
n_train_examples = int(len(Asthma_train) * VALID_RATIO)
n_valid_examples = len(Asthma_train) - n_train_examples
def stratified_split(dataset):
global VALID_RATIO,random_seed
from sklearn.model_selection import train_test_split
labels=[data.y.item() for data in dataset]
train_indices, val_indices = train_test_split(list(range(len(labels))),train_size=VALID_RATIO,shuffle=True,stratify=labels,random_state=(random_seed+42))
train_dataset = torch.utils.data.Subset(dataset, train_indices)
val_dataset = torch.utils.data.Subset(dataset, val_indices)
return train_dataset, val_dataset
graph_train_data, graph_valid_data = stratified_split(Asthma_train)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)
BATCH_SIZE = 10
graph_train_loader = torch_geometric.loader.DataLoader(graph_train_data,shuffle=True,batch_size=BATCH_SIZE,worker_init_fn=seed_worker,generator=g,num_workers=0)
graph_val_loader = torch_geometric.loader.DataLoader(graph_valid_data,shuffle=True,batch_size=BATCH_SIZE,worker_init_fn=seed_worker,generator=g,num_workers=0)
graph_test_loader = torch_geometric.loader.DataLoader(Asthma_test,batch_size=1,worker_init_fn=seed_worker,generator=g,num_workers=0)
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(args.device)
args.epochs = 40
args.test = True
args.learning_rate = 0.001
args.batch_size = BATCH_SIZE
args.weight_decay = 0
args.dropout_rate = 0.2
device = args.device
model, best_performances, test_loss, test_acc = experiment_graph(args, graph_train_loader, graph_val_loader, graph_test_loader)
y_li , true_y_li = [],[]
for data in graph_test_loader:
data = data.to(device)
out, att_idx, att_w = model(data)
y = out.cpu().detach().flatten().tolist()
true_y = data.y.cpu().detach().flatten().tolist()
y_li.extend(y)
true_y_li.extend(true_y)
from sklearn import metrics
fpr,tpr,thres_roc = metrics.roc_curve(true_y_li,y_li,pos_label=1)
precision,recall,thres_pr = metrics.precision_recall_curve(true_y_li,y_li,pos_label=1)
auprc = metrics.auc(recall,precision)
auroc = metrics.auc(fpr,tpr)
from collections import Counter
with open(args.exp_name+".performance.txt",'w') as f:
print("AUROC: {:.5f}".format(auroc),file=f)
print("AUPRC: {:.5f} \t baseline: {:.5f}".format(auprc, Counter(true_y_li)[1]/len(true_y_li)), file=f)
print("==================")
file_name = args.exp_name + '.TransformerConv.best_model'
torch.save(model.state_dict(),file_name)