[53737a]: / simdeep / deepmodel_base.py

Download this file

416 lines (332 with data), 12.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import numpy as np
import random
random.seed(2020)
try:
from tensorflow.compat.v1 import set_random_seed
except Exception:
set_random_seed = None
np.random.seed(2020)
set_random_seed(2020)
from simdeep.config import SEED
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import warnings
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
except Exception:
pass
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Input
from keras.models import Sequential
from keras.models import load_model
from keras.models import Model
from keras import regularizers
from simdeep.extract_data import LoadData
from time import time
from simdeep.config import EPOCHS
from simdeep.config import LEVEL_DIMS_IN
from simdeep.config import LEVEL_DIMS_OUT
from simdeep.config import NEW_DIM
from simdeep.config import LOSS
from simdeep.config import OPTIMIZER
from simdeep.config import ACT_REG
from simdeep.config import W_REG
from simdeep.config import DROPOUT
from simdeep.config import ACTIVATION
from simdeep.config import PATH_TO_SAVE_MODEL
from simdeep.config import DATA_SPLIT
from os.path import isfile
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def main():
""" """
simdeep = DeepBase(seed=2)
simdeep.load_training_dataset()
simdeep.construct_autoencoders()
simdeep.encoder_predict('METH', simdeep.matrix_train_array['METH'])
class DeepBase(object):
""" """
def __init__(self,
dataset=None,
verbose=True,
epochs=EPOCHS,
level_dims_in=LEVEL_DIMS_IN,
level_dims_out=LEVEL_DIMS_OUT,
new_dim=NEW_DIM,
loss=LOSS,
optimizer=OPTIMIZER,
act_reg=ACT_REG,
w_reg=W_REG,
dropout=DROPOUT,
data_split=DATA_SPLIT,
activation=ACTIVATION,
seed=SEED,
alternative_embedding=None,
kwargs_alternative_embedding={},
path_to_save_model=PATH_TO_SAVE_MODEL):
"""
### DEFAULT PARAMETER ###:
dataset=None ExtractData instance (load the dataset),
level_dims = [500]
new_dim = 100
dropout = 0.5
act_reg = 0.0001
w_reg = 0.001
data_split = 0.2
activation = 'tanh'
epochs = 10
loss = 'binary_crossentropy'
optimizer = 'sgd'
path_model where to save/load the models
"""
if dataset is None:
dataset = LoadData()
self.session = None
self.dataset = dataset
self.verbose = verbose
self.matrix_train_array = {}
self.epochs = epochs
self.level_dims_in = level_dims_in
self.level_dims_out = level_dims_out
self.new_dim = new_dim
self.loss = loss
self.optimizer = optimizer
self.dropout = dropout
self.path_to_save_model = path_to_save_model
self.activation = activation
self.data_split = data_split
self.seed = seed
self.alternative_embedding = alternative_embedding
if self.seed:
np.random.seed(self.seed)
if set_random_seed is not None:
set_random_seed(self.seed)
self.W_l1_constant = w_reg
self.A_l2_constant = act_reg
self.alternative_embedding_array = {}
self.kwargs_alternative_embedding = kwargs_alternative_embedding
self.encoder_array = {}
self.model_array = {}
self.is_model_loaded = False
def construct_autoencoders(self):
"""
main class to create the autoencoder
"""
self.create_autoencoders()
self.compile_models()
self.fit_autoencoders()
def construct_supervized_network(self, objective):
"""
main class to create the autoencoder
"""
self.create_autoencoders(objective)
self.compile_models()
self.fit_autoencoders(objective)
def load_training_dataset(self):
"""
load training dataset and surival
"""
self.dataset.load_array()
self.dataset.load_survival()
self.dataset.load_meta_data()
self.dataset.subset_training_sets()
self.dataset.create_a_cv_split()
self.dataset.normalize_training_array()
self.matrix_train_array = self.dataset.matrix_train_array
for key in self.matrix_train_array:
self.matrix_train_array[key] = self.matrix_train_array[key].astype('float32')
def load_test_dataset(self):
"""
load test dataset and test surival
"""
self.dataset.load_matrix_test()
self.dataset.load_survival_test()
def create_autoencoders(self, matrix_out=None):
""" """
for key in self.matrix_train_array:
self._create_autoencoder(self.matrix_train_array[key], key, matrix_out)
def fit_alternative_embedding(self):
""" """
embedding_class = self.alternative_embedding
for key in self.matrix_train_array:
if self.verbose:
print("Fitting alternative embedding for key: {0}, class: {1}".format(
key, embedding_class))
self.alternative_embedding_array[key] = embedding_class(
**self.kwargs_alternative_embedding)
self.alternative_embedding_array[key].fit(
self.matrix_train_array[key])
def _create_autoencoder(self, matrix_train, key, matrix_out=None):
"""
Instantiate the autoencoder architecture
"""
if self.verbose:
print('creating autoencoder...')
t = time()
model = Sequential()
X_shape = matrix_train.shape
nb_hidden = 0
for dim in self.level_dims_in:
nb_hidden += 1
model = self._add_dense_layer(
model,
X_shape,
dim,
name='hidden_layer_nb_{0}'.format(nb_hidden))
if self.dropout:
model.add(Dropout(self.dropout))
model = self._add_dense_layer(
model,
X_shape,
self.new_dim,
name='new_dim')
if self.dropout:
model.add(Dropout(self.dropout))
for dim in self.level_dims_out:
nb_hidden += 1
model = self._add_dense_layer(
model,
X_shape,
dim,
name='hidden_layer_nb_{0}'.format(nb_hidden))
if self.dropout:
model.add(Dropout(self.dropout))
if matrix_out is not None:
model = self._add_dense_layer(
model,
X_shape,
matrix_out.shape[1],
name='final_layer')
else:
model = self._add_dense_layer(
model,
X_shape,
X_shape[1],
name='final_layer')
self.model_array[key] = model
if self.verbose:
print('model for {1} created in {0}s !'.format(time() - t, key))
def _add_dense_layer(self, model, shape, dim, name=None):
"""
private function to add one layer
"""
input_dim = None
if not model.layers:
input_dim = shape[1]
model.add(Dense(dim,
activity_regularizer=regularizers.l2(self.A_l2_constant),
kernel_regularizer=regularizers.l1(self.W_l1_constant),
name=name,
activation=self.activation,
input_dim=input_dim,
))
return model
def compile_models(self):
"""
define the optimizer and the loss function
compile the model and ready to fit the data!
"""
for key in self.model_array:
model = self.model_array[key]
if self.verbose:
print('compiling deep model...')
model.compile(optimizer=self.optimizer, loss=self.loss)
if self.verbose:
print('compilation done for key {0}!'.format(key))
def fit_autoencoders(self, objective=None):
"""
fit the autoencoder using the training matrix
"""
for key in self.model_array:
model = self.model_array[key]
matrix_train = self.matrix_train_array[key]
if objective is None:
matrix_out = matrix_train
else:
matrix_out = objective
if not self.verbose:
verbose = None
else:
verbose = 2
model.fit(x=matrix_train,
y=matrix_out,
verbose=verbose,
epochs=self.epochs,
validation_split=self.data_split,
# shuffle=True
)
if self.verbose:
print('fitting done for model {0}!'.format(key))
self._define_encoders()
def embedding_predict(self, key, matrix):
"""
Predict the output value using the matrix as input and
the fitted embedding model from self.alternative_embedding_array
"""
return self.alternative_embedding_array[key].transform(matrix)
def encoder_predict(self, key, matrix):
"""
Predict the output value using the matrix as input for the encoder from key
"""
return self.encoder_array[key].predict(x=matrix)
def encoder_input_shape(self, key):
"""
Predict the output value using the matrix as input for the encoder from key
"""
return self.encoder_array[key].input_shape
def _define_encoders(self):
"""
Define the encoder output layers by using the middle layer of the autoencoders
"""
for key in self.model_array:
model = self.model_array[key]
matrix_train = self.matrix_train_array[key]
X_shape = matrix_train.shape
inp = Input(shape=(X_shape[1],))
encoder = model.layers[0](inp)
if model.layers[0].name != 'new_dim':
for layer in model.layers[1:]:
encoder = layer(encoder)
if layer.name == 'new_dim':
break
encoder = Model(inp, encoder)
encoder.compile(optimizer=self.optimizer, loss=self.loss)
self.encoder_array[key] = encoder
def save_encoders(self, fname='encoder.h5'):
"""
Save a keras model in the self.path_to_save_model directory
:fname: str the name of the file to save the model
"""
for key in self.encoder_array:
encoder = self.encoder_array[key]
encoder.save('{0}/{1}_{2}'.format(self.path_to_save_model, key, fname))
if self.verbose:
print('model saved for key:{0}!'.format(key))
def load_encoders(self, fname='encoder.h5'):
"""
Load a keras model from the self.path_to_save_model directory
:fname: str the name of the file to load
"""
for key in self.matrix_train_array:
file_path = '{0}/{1}_{2}'.format(self.path_to_save_model, key, fname)
try:
assert(isfile(file_path))
except AssertionError:
if self.verbose:
print('try loading autoencoder for {0} but file not found'.format(file_path))
print('no encoder loaded')
self.encoder_array = {}
return
t = time()
encoder = load_model(file_path)
if self.verbose:
print('model {1} loaded in {0} s!'.format(time() - t, key))
self.encoder_array[key] = encoder
self.is_model_loaded = True
if __name__ == "__main__":
main()