"""
test one instance of SimDeep
"""
from os.path import abspath
from os.path import split
from os.path import isfile
from os.path import isdir
from os import remove
from shutil import rmtree
def test_instance():
"""
test stacked of SimDeepBoosting
"""
from simdeep.simdeep_boosting import SimDeepBoosting
PATH_DATA = '{0}/../examples/data/'.format(split(abspath(__file__))[0])
TRAINING_TSV = {'RNA': 'rna_dummy.tsv', 'METH': 'meth_dummy.tsv'}
SURVIVAL_TSV = 'survival_dummy.tsv'
PROJECT_NAME = 'stacked_TestProject'
EPOCHS = 10
SEED = 3
nb_it = 5
nb_threads = 2
boosting = SimDeepBoosting(
# stack_multi_omic=True,
nb_threads=nb_threads,
nb_it=nb_it,
split_n_fold=3,
survival_tsv=SURVIVAL_TSV,
training_tsv=TRAINING_TSV,
path_data=PATH_DATA,
project_name=PROJECT_NAME,
path_results=PATH_DATA,
epochs=EPOCHS,
# normalization={'TRAIN_CORR_REDUCTION':True},
seed=SEED)
boosting.fit()
boosting.predict_labels_on_full_dataset()
boosting.compute_clusters_consistency_for_full_labels()
boosting.evalutate_cluster_performance()
boosting.collect_cindex_for_test_fold()
boosting.collect_cindex_for_full_dataset()
boosting.compute_feature_scores_per_cluster()
boosting.write_feature_score_per_cluster()
boosting.load_new_test_dataset(
{'METH': 'meth_dummy.tsv'},
'survival_dummy.tsv',
'dummy',
# normalization={'TRAIN_NORM_SCALE':True},
)
boosting.predict_labels_on_test_dataset()
boosting.compute_c_indexes_for_test_dataset()
boosting.compute_clusters_consistency_for_test_labels()
from glob import glob
for fil in glob('{0}/{1}*'.format(PATH_DATA, PROJECT_NAME)):
if isfile(fil):
remove(fil)
elif isdir(fil):
rmtree(fil)
if __name__ == '__main__':
test_instance()