|
a |
|
b/simdeep/deepmodel_base.py |
|
|
1 |
import numpy as np |
|
|
2 |
|
|
|
3 |
import random |
|
|
4 |
random.seed(2020) |
|
|
5 |
|
|
|
6 |
try: |
|
|
7 |
from tensorflow.compat.v1 import set_random_seed |
|
|
8 |
except Exception: |
|
|
9 |
set_random_seed = None |
|
|
10 |
|
|
|
11 |
np.random.seed(2020) |
|
|
12 |
set_random_seed(2020) |
|
|
13 |
|
|
|
14 |
from simdeep.config import SEED |
|
|
15 |
import os |
|
|
16 |
|
|
|
17 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
|
18 |
|
|
|
19 |
import warnings |
|
|
20 |
|
|
|
21 |
try: |
|
|
22 |
with warnings.catch_warnings(): |
|
|
23 |
warnings.simplefilter("ignore") |
|
|
24 |
import tensorflow as tf |
|
|
25 |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) |
|
|
26 |
except Exception: |
|
|
27 |
pass |
|
|
28 |
|
|
|
29 |
with warnings.catch_warnings(): |
|
|
30 |
warnings.simplefilter("ignore") |
|
|
31 |
from keras.layers import Dense |
|
|
32 |
from keras.layers import Dropout |
|
|
33 |
from keras.layers import Input |
|
|
34 |
|
|
|
35 |
from keras.models import Sequential |
|
|
36 |
from keras.models import load_model |
|
|
37 |
from keras.models import Model |
|
|
38 |
|
|
|
39 |
from keras import regularizers |
|
|
40 |
|
|
|
41 |
from simdeep.extract_data import LoadData |
|
|
42 |
|
|
|
43 |
from time import time |
|
|
44 |
|
|
|
45 |
from simdeep.config import EPOCHS |
|
|
46 |
from simdeep.config import LEVEL_DIMS_IN |
|
|
47 |
from simdeep.config import LEVEL_DIMS_OUT |
|
|
48 |
from simdeep.config import NEW_DIM |
|
|
49 |
from simdeep.config import LOSS |
|
|
50 |
from simdeep.config import OPTIMIZER |
|
|
51 |
from simdeep.config import ACT_REG |
|
|
52 |
from simdeep.config import W_REG |
|
|
53 |
from simdeep.config import DROPOUT |
|
|
54 |
from simdeep.config import ACTIVATION |
|
|
55 |
from simdeep.config import PATH_TO_SAVE_MODEL |
|
|
56 |
from simdeep.config import DATA_SPLIT |
|
|
57 |
|
|
|
58 |
from os.path import isfile |
|
|
59 |
|
|
|
60 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
def main(): |
|
|
64 |
""" """ |
|
|
65 |
simdeep = DeepBase(seed=2) |
|
|
66 |
simdeep.load_training_dataset() |
|
|
67 |
simdeep.construct_autoencoders() |
|
|
68 |
simdeep.encoder_predict('METH', simdeep.matrix_train_array['METH']) |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
class DeepBase(object): |
|
|
72 |
""" """ |
|
|
73 |
def __init__(self, |
|
|
74 |
dataset=None, |
|
|
75 |
verbose=True, |
|
|
76 |
epochs=EPOCHS, |
|
|
77 |
level_dims_in=LEVEL_DIMS_IN, |
|
|
78 |
level_dims_out=LEVEL_DIMS_OUT, |
|
|
79 |
new_dim=NEW_DIM, |
|
|
80 |
loss=LOSS, |
|
|
81 |
optimizer=OPTIMIZER, |
|
|
82 |
act_reg=ACT_REG, |
|
|
83 |
w_reg=W_REG, |
|
|
84 |
dropout=DROPOUT, |
|
|
85 |
data_split=DATA_SPLIT, |
|
|
86 |
activation=ACTIVATION, |
|
|
87 |
seed=SEED, |
|
|
88 |
alternative_embedding=None, |
|
|
89 |
kwargs_alternative_embedding={}, |
|
|
90 |
path_to_save_model=PATH_TO_SAVE_MODEL): |
|
|
91 |
""" |
|
|
92 |
### DEFAULT PARAMETER ###: |
|
|
93 |
dataset=None ExtractData instance (load the dataset), |
|
|
94 |
level_dims = [500] |
|
|
95 |
new_dim = 100 |
|
|
96 |
dropout = 0.5 |
|
|
97 |
act_reg = 0.0001 |
|
|
98 |
w_reg = 0.001 |
|
|
99 |
data_split = 0.2 |
|
|
100 |
activation = 'tanh' |
|
|
101 |
epochs = 10 |
|
|
102 |
loss = 'binary_crossentropy' |
|
|
103 |
optimizer = 'sgd' |
|
|
104 |
path_model where to save/load the models |
|
|
105 |
""" |
|
|
106 |
if dataset is None: |
|
|
107 |
dataset = LoadData() |
|
|
108 |
|
|
|
109 |
self.session = None |
|
|
110 |
self.dataset = dataset |
|
|
111 |
self.verbose = verbose |
|
|
112 |
|
|
|
113 |
self.matrix_train_array = {} |
|
|
114 |
|
|
|
115 |
self.epochs = epochs |
|
|
116 |
self.level_dims_in = level_dims_in |
|
|
117 |
self.level_dims_out = level_dims_out |
|
|
118 |
self.new_dim = new_dim |
|
|
119 |
self.loss = loss |
|
|
120 |
self.optimizer = optimizer |
|
|
121 |
self.dropout = dropout |
|
|
122 |
self.path_to_save_model = path_to_save_model |
|
|
123 |
self.activation = activation |
|
|
124 |
self.data_split = data_split |
|
|
125 |
self.seed = seed |
|
|
126 |
self.alternative_embedding = alternative_embedding |
|
|
127 |
|
|
|
128 |
if self.seed: |
|
|
129 |
np.random.seed(self.seed) |
|
|
130 |
|
|
|
131 |
if set_random_seed is not None: |
|
|
132 |
set_random_seed(self.seed) |
|
|
133 |
|
|
|
134 |
self.W_l1_constant = w_reg |
|
|
135 |
self.A_l2_constant = act_reg |
|
|
136 |
|
|
|
137 |
self.alternative_embedding_array = {} |
|
|
138 |
self.kwargs_alternative_embedding = kwargs_alternative_embedding |
|
|
139 |
self.encoder_array = {} |
|
|
140 |
self.model_array = {} |
|
|
141 |
|
|
|
142 |
self.is_model_loaded = False |
|
|
143 |
|
|
|
144 |
def construct_autoencoders(self): |
|
|
145 |
""" |
|
|
146 |
main class to create the autoencoder |
|
|
147 |
""" |
|
|
148 |
self.create_autoencoders() |
|
|
149 |
self.compile_models() |
|
|
150 |
self.fit_autoencoders() |
|
|
151 |
|
|
|
152 |
def construct_supervized_network(self, objective): |
|
|
153 |
""" |
|
|
154 |
main class to create the autoencoder |
|
|
155 |
""" |
|
|
156 |
self.create_autoencoders(objective) |
|
|
157 |
self.compile_models() |
|
|
158 |
self.fit_autoencoders(objective) |
|
|
159 |
|
|
|
160 |
def load_training_dataset(self): |
|
|
161 |
""" |
|
|
162 |
load training dataset and surival |
|
|
163 |
""" |
|
|
164 |
self.dataset.load_array() |
|
|
165 |
self.dataset.load_survival() |
|
|
166 |
self.dataset.load_meta_data() |
|
|
167 |
self.dataset.subset_training_sets() |
|
|
168 |
|
|
|
169 |
self.dataset.create_a_cv_split() |
|
|
170 |
self.dataset.normalize_training_array() |
|
|
171 |
|
|
|
172 |
self.matrix_train_array = self.dataset.matrix_train_array |
|
|
173 |
|
|
|
174 |
for key in self.matrix_train_array: |
|
|
175 |
self.matrix_train_array[key] = self.matrix_train_array[key].astype('float32') |
|
|
176 |
|
|
|
177 |
def load_test_dataset(self): |
|
|
178 |
""" |
|
|
179 |
load test dataset and test surival |
|
|
180 |
""" |
|
|
181 |
self.dataset.load_matrix_test() |
|
|
182 |
self.dataset.load_survival_test() |
|
|
183 |
|
|
|
184 |
def create_autoencoders(self, matrix_out=None): |
|
|
185 |
""" """ |
|
|
186 |
for key in self.matrix_train_array: |
|
|
187 |
self._create_autoencoder(self.matrix_train_array[key], key, matrix_out) |
|
|
188 |
|
|
|
189 |
def fit_alternative_embedding(self): |
|
|
190 |
""" """ |
|
|
191 |
embedding_class = self.alternative_embedding |
|
|
192 |
|
|
|
193 |
for key in self.matrix_train_array: |
|
|
194 |
if self.verbose: |
|
|
195 |
print("Fitting alternative embedding for key: {0}, class: {1}".format( |
|
|
196 |
key, embedding_class)) |
|
|
197 |
|
|
|
198 |
self.alternative_embedding_array[key] = embedding_class( |
|
|
199 |
**self.kwargs_alternative_embedding) |
|
|
200 |
|
|
|
201 |
self.alternative_embedding_array[key].fit( |
|
|
202 |
self.matrix_train_array[key]) |
|
|
203 |
|
|
|
204 |
def _create_autoencoder(self, matrix_train, key, matrix_out=None): |
|
|
205 |
""" |
|
|
206 |
Instantiate the autoencoder architecture |
|
|
207 |
""" |
|
|
208 |
if self.verbose: |
|
|
209 |
print('creating autoencoder...') |
|
|
210 |
t = time() |
|
|
211 |
|
|
|
212 |
model = Sequential() |
|
|
213 |
|
|
|
214 |
X_shape = matrix_train.shape |
|
|
215 |
|
|
|
216 |
nb_hidden = 0 |
|
|
217 |
|
|
|
218 |
for dim in self.level_dims_in: |
|
|
219 |
nb_hidden += 1 |
|
|
220 |
model = self._add_dense_layer( |
|
|
221 |
model, |
|
|
222 |
X_shape, |
|
|
223 |
dim, |
|
|
224 |
name='hidden_layer_nb_{0}'.format(nb_hidden)) |
|
|
225 |
|
|
|
226 |
if self.dropout: |
|
|
227 |
model.add(Dropout(self.dropout)) |
|
|
228 |
|
|
|
229 |
model = self._add_dense_layer( |
|
|
230 |
model, |
|
|
231 |
X_shape, |
|
|
232 |
self.new_dim, |
|
|
233 |
name='new_dim') |
|
|
234 |
|
|
|
235 |
if self.dropout: |
|
|
236 |
model.add(Dropout(self.dropout)) |
|
|
237 |
|
|
|
238 |
for dim in self.level_dims_out: |
|
|
239 |
nb_hidden += 1 |
|
|
240 |
model = self._add_dense_layer( |
|
|
241 |
model, |
|
|
242 |
X_shape, |
|
|
243 |
dim, |
|
|
244 |
name='hidden_layer_nb_{0}'.format(nb_hidden)) |
|
|
245 |
|
|
|
246 |
if self.dropout: |
|
|
247 |
model.add(Dropout(self.dropout)) |
|
|
248 |
|
|
|
249 |
if matrix_out is not None: |
|
|
250 |
model = self._add_dense_layer( |
|
|
251 |
model, |
|
|
252 |
X_shape, |
|
|
253 |
matrix_out.shape[1], |
|
|
254 |
name='final_layer') |
|
|
255 |
else: |
|
|
256 |
model = self._add_dense_layer( |
|
|
257 |
model, |
|
|
258 |
X_shape, |
|
|
259 |
X_shape[1], |
|
|
260 |
name='final_layer') |
|
|
261 |
|
|
|
262 |
self.model_array[key] = model |
|
|
263 |
|
|
|
264 |
if self.verbose: |
|
|
265 |
print('model for {1} created in {0}s !'.format(time() - t, key)) |
|
|
266 |
|
|
|
267 |
def _add_dense_layer(self, model, shape, dim, name=None): |
|
|
268 |
""" |
|
|
269 |
private function to add one layer |
|
|
270 |
""" |
|
|
271 |
input_dim = None |
|
|
272 |
|
|
|
273 |
if not model.layers: |
|
|
274 |
input_dim = shape[1] |
|
|
275 |
|
|
|
276 |
model.add(Dense(dim, |
|
|
277 |
activity_regularizer=regularizers.l2(self.A_l2_constant), |
|
|
278 |
kernel_regularizer=regularizers.l1(self.W_l1_constant), |
|
|
279 |
name=name, |
|
|
280 |
activation=self.activation, |
|
|
281 |
input_dim=input_dim, |
|
|
282 |
)) |
|
|
283 |
return model |
|
|
284 |
|
|
|
285 |
def compile_models(self): |
|
|
286 |
""" |
|
|
287 |
define the optimizer and the loss function |
|
|
288 |
compile the model and ready to fit the data! |
|
|
289 |
""" |
|
|
290 |
for key in self.model_array: |
|
|
291 |
model = self.model_array[key] |
|
|
292 |
if self.verbose: |
|
|
293 |
print('compiling deep model...') |
|
|
294 |
|
|
|
295 |
model.compile(optimizer=self.optimizer, loss=self.loss) |
|
|
296 |
|
|
|
297 |
if self.verbose: |
|
|
298 |
print('compilation done for key {0}!'.format(key)) |
|
|
299 |
|
|
|
300 |
def fit_autoencoders(self, objective=None): |
|
|
301 |
""" |
|
|
302 |
fit the autoencoder using the training matrix |
|
|
303 |
""" |
|
|
304 |
for key in self.model_array: |
|
|
305 |
model = self.model_array[key] |
|
|
306 |
matrix_train = self.matrix_train_array[key] |
|
|
307 |
|
|
|
308 |
if objective is None: |
|
|
309 |
matrix_out = matrix_train |
|
|
310 |
else: |
|
|
311 |
matrix_out = objective |
|
|
312 |
|
|
|
313 |
if not self.verbose: |
|
|
314 |
verbose = None |
|
|
315 |
else: |
|
|
316 |
verbose = 2 |
|
|
317 |
|
|
|
318 |
model.fit(x=matrix_train, |
|
|
319 |
y=matrix_out, |
|
|
320 |
verbose=verbose, |
|
|
321 |
epochs=self.epochs, |
|
|
322 |
validation_split=self.data_split, |
|
|
323 |
# shuffle=True |
|
|
324 |
) |
|
|
325 |
|
|
|
326 |
if self.verbose: |
|
|
327 |
print('fitting done for model {0}!'.format(key)) |
|
|
328 |
|
|
|
329 |
self._define_encoders() |
|
|
330 |
|
|
|
331 |
def embedding_predict(self, key, matrix): |
|
|
332 |
""" |
|
|
333 |
Predict the output value using the matrix as input and |
|
|
334 |
the fitted embedding model from self.alternative_embedding_array |
|
|
335 |
""" |
|
|
336 |
return self.alternative_embedding_array[key].transform(matrix) |
|
|
337 |
|
|
|
338 |
def encoder_predict(self, key, matrix): |
|
|
339 |
""" |
|
|
340 |
Predict the output value using the matrix as input for the encoder from key |
|
|
341 |
""" |
|
|
342 |
return self.encoder_array[key].predict(x=matrix) |
|
|
343 |
|
|
|
344 |
def encoder_input_shape(self, key): |
|
|
345 |
""" |
|
|
346 |
Predict the output value using the matrix as input for the encoder from key |
|
|
347 |
""" |
|
|
348 |
return self.encoder_array[key].input_shape |
|
|
349 |
|
|
|
350 |
|
|
|
351 |
def _define_encoders(self): |
|
|
352 |
""" |
|
|
353 |
Define the encoder output layers by using the middle layer of the autoencoders |
|
|
354 |
""" |
|
|
355 |
for key in self.model_array: |
|
|
356 |
model = self.model_array[key] |
|
|
357 |
matrix_train = self.matrix_train_array[key] |
|
|
358 |
|
|
|
359 |
X_shape = matrix_train.shape |
|
|
360 |
|
|
|
361 |
inp = Input(shape=(X_shape[1],)) |
|
|
362 |
encoder = model.layers[0](inp) |
|
|
363 |
|
|
|
364 |
if model.layers[0].name != 'new_dim': |
|
|
365 |
|
|
|
366 |
for layer in model.layers[1:]: |
|
|
367 |
encoder = layer(encoder) |
|
|
368 |
if layer.name == 'new_dim': |
|
|
369 |
break |
|
|
370 |
|
|
|
371 |
encoder = Model(inp, encoder) |
|
|
372 |
encoder.compile(optimizer=self.optimizer, loss=self.loss) |
|
|
373 |
|
|
|
374 |
self.encoder_array[key] = encoder |
|
|
375 |
|
|
|
376 |
def save_encoders(self, fname='encoder.h5'): |
|
|
377 |
""" |
|
|
378 |
Save a keras model in the self.path_to_save_model directory |
|
|
379 |
:fname: str the name of the file to save the model |
|
|
380 |
""" |
|
|
381 |
for key in self.encoder_array: |
|
|
382 |
encoder = self.encoder_array[key] |
|
|
383 |
encoder.save('{0}/{1}_{2}'.format(self.path_to_save_model, key, fname)) |
|
|
384 |
|
|
|
385 |
if self.verbose: |
|
|
386 |
print('model saved for key:{0}!'.format(key)) |
|
|
387 |
|
|
|
388 |
def load_encoders(self, fname='encoder.h5'): |
|
|
389 |
""" |
|
|
390 |
Load a keras model from the self.path_to_save_model directory |
|
|
391 |
:fname: str the name of the file to load |
|
|
392 |
""" |
|
|
393 |
for key in self.matrix_train_array: |
|
|
394 |
file_path = '{0}/{1}_{2}'.format(self.path_to_save_model, key, fname) |
|
|
395 |
try: |
|
|
396 |
assert(isfile(file_path)) |
|
|
397 |
except AssertionError: |
|
|
398 |
if self.verbose: |
|
|
399 |
print('try loading autoencoder for {0} but file not found'.format(file_path)) |
|
|
400 |
print('no encoder loaded') |
|
|
401 |
self.encoder_array = {} |
|
|
402 |
return |
|
|
403 |
|
|
|
404 |
t = time() |
|
|
405 |
encoder = load_model(file_path) |
|
|
406 |
|
|
|
407 |
if self.verbose: |
|
|
408 |
print('model {1} loaded in {0} s!'.format(time() - t, key)) |
|
|
409 |
|
|
|
410 |
self.encoder_array[key] = encoder |
|
|
411 |
self.is_model_loaded = True |
|
|
412 |
|
|
|
413 |
|
|
|
414 |
if __name__ == "__main__": |
|
|
415 |
main() |