|
a |
|
b/examples/load_3_omics_model.py |
|
|
1 |
""" |
|
|
2 |
Load the 3-omics and perform subtype detecion from the HCC dataset |
|
|
3 |
|
|
|
4 |
tsv files used in the original study are available in the ./data folder of this project. |
|
|
5 |
However, theses files must be decompressed using this function in linux: |
|
|
6 |
gzip -d *.gz. |
|
|
7 |
|
|
|
8 |
""" |
|
|
9 |
|
|
|
10 |
# Python import needed |
|
|
11 |
from simdeep.simdeep_boosting import SimDeepBoosting |
|
|
12 |
from simdeep.config import PATH_THIS_FILE |
|
|
13 |
|
|
|
14 |
from collections import OrderedDict |
|
|
15 |
|
|
|
16 |
from os.path import isfile |
|
|
17 |
|
|
|
18 |
from sys import exit |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def main(): |
|
|
22 |
""" Main function excecuted """ |
|
|
23 |
path_data = PATH_THIS_FILE + "/../data/" |
|
|
24 |
|
|
|
25 |
# Testing if the files were decompressed in the good repository |
|
|
26 |
try: |
|
|
27 |
assert(isfile(path_data + "meth.tsv")) |
|
|
28 |
assert(isfile(path_data + "rna.tsv")) |
|
|
29 |
assert(isfile(path_data + "mir.tsv")) |
|
|
30 |
except AssertionError: |
|
|
31 |
print('gz files in {0} must be decompressed !\n exiting...'.format(path_data)) |
|
|
32 |
exit(1) |
|
|
33 |
|
|
|
34 |
# Tsv files used in the original study in the appropriate order |
|
|
35 |
tsv_files = OrderedDict([ |
|
|
36 |
('MIR', 'mir.tsv'), |
|
|
37 |
('METH', 'meth.tsv'), |
|
|
38 |
('RNA', 'rna.tsv'), |
|
|
39 |
]) |
|
|
40 |
|
|
|
41 |
# File with survival event |
|
|
42 |
survival_tsv = 'survival.tsv' |
|
|
43 |
|
|
|
44 |
# As test dataset we will use the rna.tsv only |
|
|
45 |
tsv_test = {'RNA': 'rna.tsv'} |
|
|
46 |
# because it is the same data, we should use the same survival file |
|
|
47 |
test_survival = 'survival.tsv' |
|
|
48 |
|
|
|
49 |
PROJECT_NAME = 'HCC_dataset' |
|
|
50 |
EPOCHS = 10 |
|
|
51 |
SEED = 10045 |
|
|
52 |
nb_it = 3 |
|
|
53 |
nb_threads = 2 |
|
|
54 |
|
|
|
55 |
survival_flag = { |
|
|
56 |
'patient_id': 'Samples', |
|
|
57 |
'survival': 'days', |
|
|
58 |
'event': 'event'} |
|
|
59 |
|
|
|
60 |
import ray |
|
|
61 |
ray.init(num_cpus=3) |
|
|
62 |
|
|
|
63 |
normalization = { |
|
|
64 |
'NB_FEATURES_TO_KEEP': 100, # variance selection features. 0 is all the feature |
|
|
65 |
'TRAIN_RANK_NORM': True, |
|
|
66 |
'TRAIN_CORR_REDUCTION': True, |
|
|
67 |
'TRAIN_CORR_RANK_NORM': True, |
|
|
68 |
'TRAIN_ROBUST_SCALE': False, |
|
|
69 |
} |
|
|
70 |
|
|
|
71 |
# Instanciate a DeepProg instance |
|
|
72 |
boosting = SimDeepBoosting( |
|
|
73 |
nb_threads=nb_threads, |
|
|
74 |
nb_it=nb_it, |
|
|
75 |
split_n_fold=3, |
|
|
76 |
survival_tsv=survival_tsv, |
|
|
77 |
training_tsv=tsv_files, |
|
|
78 |
path_data=path_data, |
|
|
79 |
project_name=PROJECT_NAME, |
|
|
80 |
path_results=path_data, |
|
|
81 |
epochs=EPOCHS, |
|
|
82 |
survival_flag=survival_flag, |
|
|
83 |
distribute=True, |
|
|
84 |
cluster_method="mixture", |
|
|
85 |
use_autoencoders=True, |
|
|
86 |
feature_surv_analysis=True, |
|
|
87 |
normalization=normalization, |
|
|
88 |
seed=SEED) |
|
|
89 |
|
|
|
90 |
boosting.fit() |
|
|
91 |
|
|
|
92 |
# predict labels of the training |
|
|
93 |
|
|
|
94 |
boosting.predict_labels_on_full_dataset() |
|
|
95 |
boosting.compute_clusters_consistency_for_full_labels() |
|
|
96 |
boosting.evalutate_cluster_performance() |
|
|
97 |
boosting.collect_cindex_for_test_fold() |
|
|
98 |
boosting.collect_cindex_for_full_dataset() |
|
|
99 |
boosting.compute_pvalue_for_merged_test_fold() |
|
|
100 |
|
|
|
101 |
boosting.compute_feature_scores_per_cluster() |
|
|
102 |
boosting.write_feature_score_per_cluster() |
|
|
103 |
|
|
|
104 |
# Finally, load test set |
|
|
105 |
boosting.load_new_test_dataset( |
|
|
106 |
tsv_test, |
|
|
107 |
'test_RNA_only', |
|
|
108 |
test_survival, |
|
|
109 |
) |
|
|
110 |
|
|
|
111 |
boosting.predict_labels_on_test_dataset() |
|
|
112 |
boosting.compute_c_indexes_for_test_dataset() |
|
|
113 |
boosting.compute_clusters_consistency_for_test_labels() |
|
|
114 |
|
|
|
115 |
# Experimental method to plot the test dataset amongst the class kernel densities |
|
|
116 |
boosting.plot_supervised_kernel_for_test_sets() |
|
|
117 |
boosting.plot_supervised_predicted_labels_for_test_sets() |
|
|
118 |
|
|
|
119 |
#All the parameters are attributes of the SimDeep instance: |
|
|
120 |
|
|
|
121 |
# boosting.labels |
|
|
122 |
# boosting.test_labels |
|
|
123 |
# boosting.test_labels_proba |
|
|
124 |
# ... etc... |
|
|
125 |
|
|
|
126 |
# Close clusters and free memory |
|
|
127 |
ray.shutdown() |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
if __name__ == "__main__": |
|
|
131 |
main() |