[53737a]: / docs / _build / html / usage_ensemble.html

Download this file

436 lines (310 with data), 24.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Tutorial: Ensemble of DeepProg model &mdash; DeepProg documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Tutorial: Advanced usage of DeepProg model" href="usage_advanced.html" />
<link rel="prev" title="Tutorial: Simple DeepProg model" href="usage.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home"> DeepProg
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="usage.html">Tutorial: Simple DeepProg model</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial: Ensemble of DeepProg model</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#instanciation">Instanciation</a></li>
<li class="toctree-l2"><a class="reference internal" href="#fitting">Fitting</a></li>
<li class="toctree-l2"><a class="reference internal" href="#evaluate-the-models">Evaluate the models</a></li>
<li class="toctree-l2"><a class="reference internal" href="#predicting-on-test-dataset">Predicting on test dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="#distributed-computation">Distributed computation</a></li>
<li class="toctree-l2"><a class="reference internal" href="#more-examples">More examples</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="usage_advanced.html">Tutorial: Advanced usage of DeepProg model</a></li>
<li class="toctree-l1"><a class="reference internal" href="case_study.html">Case study: Analyzing TCGA HCC dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="LICENSE.html">License</a></li>
<li class="toctree-l1"><a class="reference internal" href="api/simdeep.html">simdeep package</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">DeepProg</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
<li>Tutorial: Ensemble of DeepProg model</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/usage_ensemble.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="tutorial-ensemble-of-deepprog-model">
<h1>Tutorial: Ensemble of DeepProg model<a class="headerlink" href="#tutorial-ensemble-of-deepprog-model" title="Permalink to this headline"></a></h1>
<p>Secondly, we will build a more complex DeepProg model constituted of an ensemble of sub-models, each originated from a subset of the data. For that purpose, we need to use the <code class="docutils literal notranslate"><span class="pre">SimDeepBoosting</span></code> class:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">simdeep.simdeep_boosting</span> <span class="kn">import</span> <span class="n">SimDeepBoosting</span>
<span class="n">help</span><span class="p">(</span><span class="n">SimDeepBoosting</span><span class="p">)</span>
</pre></div>
</div>
<p>Similarly, to the SimDeep class, we define our training dataset</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Location of the input matrices and survival file</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">PATH_DATA</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="c1"># Example tsv files</span>
<span class="n">tsv_files</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;MIR&#39;</span><span class="p">,</span> <span class="s1">&#39;mir_dummy.tsv&#39;</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;METH&#39;</span><span class="p">,</span> <span class="s1">&#39;meth_dummy.tsv&#39;</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;RNA&#39;</span><span class="p">,</span> <span class="s1">&#39;rna_dummy.tsv&#39;</span><span class="p">),</span>
<span class="p">])</span>
<span class="c1"># File with survival event</span>
<span class="n">survival_tsv</span> <span class="o">=</span> <span class="s1">&#39;survival_dummy.tsv&#39;</span>
</pre></div>
</div>
<div class="section" id="instanciation">
<h2>Instanciation<a class="headerlink" href="#instanciation" title="Permalink to this headline"></a></h2>
<p>Then, we define arguments specific to DeepProg and instanciate an instance of the class</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">project_name</span> <span class="o">=</span> <span class="s1">&#39;stacked_TestProject&#39;</span>
<span class="n">epochs</span> <span class="o">=</span> <span class="mi">10</span> <span class="c1"># Autoencoder epochs. Other hyperparameters can be fine-tuned. See the example files</span>
<span class="n">seed</span> <span class="o">=</span> <span class="mi">3</span> <span class="c1"># random seed used for reproducibility</span>
<span class="n">nb_it</span> <span class="o">=</span> <span class="mi">5</span> <span class="c1"># This is the number of models to be fitted using only a subset of the training data</span>
<span class="n">nb_threads</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1"># These treads define the number of threads to be used to compute survival function</span>
<span class="n">PATH_RESULTS</span> <span class="o">=</span> <span class="s2">&quot;./&quot;</span>
<span class="n">boosting</span> <span class="o">=</span> <span class="n">SimDeepBoosting</span><span class="p">(</span>
<span class="n">nb_threads</span><span class="o">=</span><span class="n">nb_threads</span><span class="p">,</span>
<span class="n">nb_it</span><span class="o">=</span><span class="n">nb_it</span><span class="p">,</span>
<span class="n">split_n_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">survival_tsv</span><span class="o">=</span><span class="n">survival_tsv</span><span class="p">,</span>
<span class="n">training_tsv</span><span class="o">=</span><span class="n">tsv_files</span><span class="p">,</span>
<span class="n">path_data</span><span class="o">=</span><span class="n">PATH_DATA</span><span class="p">,</span>
<span class="n">project_name</span><span class="o">=</span><span class="n">project_name</span><span class="p">,</span>
<span class="n">path_results</span><span class="o">=</span><span class="n">PATH_RESULTS</span><span class="p">,</span>
<span class="n">epochs</span><span class="o">=</span><span class="n">epochs</span><span class="p">,</span>
<span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
</pre></div>
</div>
<p>Here, we define a DeepProg model that will create 5 SimDeep instances each based on a subset of the original training dataset.the number of instance is defined by he <code class="docutils literal notranslate"><span class="pre">nb_it</span></code> argument. Other arguments related to the autoencoders construction can be defined during the class instanciation, such as <code class="docutils literal notranslate"><span class="pre">epochs</span></code>.</p>
</div>
<div class="section" id="fitting">
<h2>Fitting<a class="headerlink" href="#fitting" title="Permalink to this headline"></a></h2>
<p>Once the model is defined we can fit it</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Fit the model</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
<span class="c1"># Predict and write the labels</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">predict_labels_on_full_dataset</span><span class="p">()</span>
</pre></div>
</div>
<p>Some output files are generated in the output folder:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>stacked_TestProject
├── stacked_TestProject_full_labels.tsv
├── stacked_TestProject_KM_plot_boosting_full.png
├── stacked_TestProject_proba_KM_plot_boosting_full.png
├── stacked_TestProject_test_fold_labels.tsv
└── stacked_TestProject_training_set_labels.tsv
</pre></div>
</div>
<p>The inferred labels, labels probability, survival time, and event are written in the <code class="docutils literal notranslate"><span class="pre">stacked_TestProject_full_labels.tsv</span></code> file:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>sample_test_48 <span class="m">1</span> <span class="m">0</span>.474781026865 <span class="m">332</span>.0 <span class="m">1</span>.0
sample_test_49 <span class="m">1</span> <span class="m">0</span>.142554926379 <span class="m">120</span>.0 <span class="m">0</span>.0
sample_test_46 <span class="m">1</span> <span class="m">0</span>.355333486034 <span class="m">355</span>.0 <span class="m">1</span>.0
sample_test_47 <span class="m">0</span> <span class="m">0</span>.618825352398 <span class="m">48</span>.0 <span class="m">1</span>.0
sample_test_44 <span class="m">1</span> <span class="m">0</span>.346797097671 <span class="m">179</span>.0 <span class="m">0</span>.0
sample_test_45 <span class="m">1</span> <span class="m">0</span>.0254692404734 <span class="m">360</span>.0 <span class="m">0</span>.0
sample_test_42 <span class="m">1</span> <span class="m">0</span>.441997226254 <span class="m">346</span>.0 <span class="m">1</span>.0
sample_test_43 <span class="m">1</span> <span class="m">0</span>.0783603292911 <span class="m">335</span>.0 <span class="m">0</span>.0
sample_test_40 <span class="m">1</span> <span class="m">0</span>.380182410315 <span class="m">149</span>.0 <span class="m">0</span>.0
sample_test_41 <span class="m">0</span> <span class="m">0</span>.953659261728 <span class="m">155</span>.0 <span class="m">1</span>.0
</pre></div>
</div>
<p>Note that the label probablity corresponds to the probability to belongs to the subtype with the lowest survival rate.
Two KM plots are also generated, one using the cluster labels:</p>
<p><img alt="KM plot 3" src="_images/stacked_TestProject_KM_plot_boosting_full.png" /></p>
<p>and one using the cluster label probability dichotomized:</p>
<p><img alt="KM plot 4" src="_images/stacked_TestProject_proba_KM_plot_boosting_full.png" /></p>
<p>We can also compute the feature importance per cluster:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># oOmpute the feature importance</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_feature_scores_per_cluster</span><span class="p">()</span>
<span class="c1"># Write the feature importance</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">write_feature_score_per_cluster</span><span class="p">()</span>
</pre></div>
</div>
<p>The results are updated in the output folder:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>stacked_TestProject
├── stacked_TestProject_features_anticorrelated_scores_per_clusters.tsv
├── stacked_TestProject_features_scores_per_clusters.tsv
├── stacked_TestProject_full_labels.tsv
├── stacked_TestProject_KM_plot_boosting_full.png
├── stacked_TestProject_proba_KM_plot_boosting_full.png
├── stacked_TestProject_test_fold_labels.tsv
└── stacked_TestProject_training_set_labels.tsv
</pre></div>
</div>
</div>
<div class="section" id="evaluate-the-models">
<h2>Evaluate the models<a class="headerlink" href="#evaluate-the-models" title="Permalink to this headline"></a></h2>
<p>DeepProg allows to compute specific metrics relative to the ensemble of models:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Compute internal metrics</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_clusters_consistency_for_full_labels</span><span class="p">()</span>
<span class="c1"># Collect c-index</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_c_indexes_for_full_dataset</span><span class="p">()</span>
<span class="c1"># Evaluate cluster performance</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">evalutate_cluster_performance</span><span class="p">()</span>
<span class="c1"># Collect more c-indexes</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">collect_cindex_for_test_fold</span><span class="p">()</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">collect_cindex_for_full_dataset</span><span class="p">()</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">collect_cindex_for_training_dataset</span><span class="p">()</span>
<span class="c1"># See Ave. number of significant features per omic across OMIC models</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">collect_number_of_features_per_omic</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="section" id="predicting-on-test-dataset">
<h2>Predicting on test dataset<a class="headerlink" href="#predicting-on-test-dataset" title="Permalink to this headline"></a></h2>
<p>We can then load and evaluate a first test dataset</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">boosting</span><span class="o">.</span><span class="n">load_new_test_dataset</span><span class="p">(</span>
<span class="p">{</span><span class="s1">&#39;RNA&#39;</span><span class="p">:</span> <span class="s1">&#39;rna_dummy.tsv&#39;</span><span class="p">},</span> <span class="c1"># OMIC file of the test set. It doesnt have to be the same as for training</span>
<span class="s1">&#39;TEST_DATA_1&#39;</span><span class="p">,</span> <span class="c1"># Name of the test test to be used</span>
<span class="s1">&#39;survival_dummy.tsv&#39;</span><span class="p">,</span> <span class="c1"># [OPTIONAL] Survival file of the test set. USeful to compute accuracy metrics on the test dataset</span>
<span class="p">)</span>
<span class="c1"># Predict the labels on the test dataset</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">predict_labels_on_test_dataset</span><span class="p">()</span>
<span class="c1"># Compute C-index</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_c_indexes_for_test_dataset</span><span class="p">()</span>
<span class="c1"># See cluster consistency</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_clusters_consistency_for_test_labels</span><span class="p">()</span>
</pre></div>
</div>
<p>We can load an evaluate a second test dataset</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">boosting</span><span class="o">.</span><span class="n">load_new_test_dataset</span><span class="p">(</span>
<span class="p">{</span><span class="s1">&#39;MIR&#39;</span><span class="p">:</span> <span class="s1">&#39;mir_dummy.tsv&#39;</span><span class="p">},</span> <span class="c1"># OMIC file of the test set. It doesnt have to be the same as for training</span>
<span class="s1">&#39;survival_dummy.tsv&#39;</span><span class="p">,</span> <span class="c1"># Survival file of the test set</span>
<span class="s1">&#39;TEST_DATA_2&#39;</span><span class="p">,</span> <span class="c1"># Name of the test test to be used</span>
<span class="p">)</span>
<span class="c1"># Predict the labels on the test dataset</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">predict_labels_on_test_dataset</span><span class="p">()</span>
<span class="c1"># Compute C-index</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_c_indexes_for_test_dataset</span><span class="p">()</span>
<span class="c1"># See cluster consistency</span>
<span class="n">boosting</span><span class="o">.</span><span class="n">compute_clusters_consistency_for_test_labels</span><span class="p">()</span>
</pre></div>
</div>
<p>The output folder is updated with the new output files</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>stacked_TestProject
├── stacked_TestProject_features_anticorrelated_scores_per_clusters.tsv
├── stacked_TestProject_features_scores_per_clusters.tsv
├── stacked_TestProject_full_labels.tsv
├── stacked_TestProject_KM_plot_boosting_full.png
├── stacked_TestProject_proba_KM_plot_boosting_full.png
├── stacked_TestProject_TEST_DATA_1_KM_plot_boosting_test.png
├── stacked_TestProject_TEST_DATA_1_proba_KM_plot_boosting_test.png
├── stacked_TestProject_TEST_DATA_1_test_labels.tsv
├── stacked_TestProject_TEST_DATA_2_KM_plot_boosting_test.png
├── stacked_TestProject_TEST_DATA_2_proba_KM_plot_boosting_test.png
├── stacked_TestProject_TEST_DATA_2_test_labels.tsv
├── stacked_TestProject_test_fold_labels.tsv
├── stacked_TestProject_test_labels.tsv
└── stacked_TestProject_training_set_labels.tsv
</pre></div>
</div>
<p>file: stacked_TestProject_TEST_DATA_1_KM_plot_boosting_test.png</p>
<p><img alt="test KM plot 1" src="_images/stacked_TestProject_TEST_DATA_1_KM_plot_boosting_test.png" /></p>
<p>file: stacked_TestProject_TEST_DATA_2_KM_plot_boosting_test.png</p>
<p><img alt="test KM plot 2" src="_images/stacked_TestProject_TEST_DATA_2_KM_plot_boosting_test.png" /></p>
</div>
<div class="section" id="distributed-computation">
<h2>Distributed computation<a class="headerlink" href="#distributed-computation" title="Permalink to this headline"></a></h2>
<p>Because SimDeepBoosting constructs an ensemble of models, it is well suited to distribute the individual construction of each SimDeep instance. To do such a task, we implemented the use of the ray framework that allow DeepProg to distribute the creation of each submodel on different clusters/nodes/CPUs. The configuration of the nodes / clusters, or local CPUs to be used needs to be done when instanciating a new ray object with the ray <a class="reference external" href="https://ray.readthedocs.io/en/latest/">API</a>. It is however quite straightforward to define the number of instances launched on a local machine such as in the example below in which 3 instances are used.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Instanciate a ray object that will create multiple workers</span>
<span class="kn">import</span> <span class="nn">ray</span>
<span class="n">ray</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">num_cpus</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="c1"># More options can be used (e.g. remote clusters, AWS, memory,...etc...)</span>
<span class="c1"># ray can be used locally to maximize the use of CPUs on the local machine</span>
<span class="c1"># See ray API: https://ray.readthedocs.io/en/latest/index.html</span>
<span class="n">boosting</span> <span class="o">=</span> <span class="n">SimDeepBoosting</span><span class="p">(</span>
<span class="o">...</span>
<span class="n">distribute</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="c1"># Additional option to use ray cluster scheduler</span>
<span class="o">...</span>
<span class="p">)</span>
<span class="o">...</span>
<span class="c1"># Processing</span>
<span class="o">...</span>
<span class="c1"># Close clusters and free memory</span>
<span class="n">ray</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="section" id="more-examples">
<h2>More examples<a class="headerlink" href="#more-examples" title="Permalink to this headline"></a></h2>
<p>More example scripts are availables in ./examples/ which will assist you to build a model from scratch with test and real data:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>examples
├── create_autoencoder_from_scratch.py <span class="c1"># Construct a simple deeprog model on the dummy example dataset</span>
├── example_with_dummy_data_distributed.py <span class="c1"># Process the dummy example dataset using ray</span>
├── example_with_dummy_data.py <span class="c1"># Process the dummy example dataset</span>
└── load_3_omics_model.py <span class="c1"># Process the example HCC dataset</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="usage_advanced.html" class="btn btn-neutral float-right" title="Tutorial: Advanced usage of DeepProg model" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="usage.html" class="btn btn-neutral float-left" title="Tutorial: Simple DeepProg model" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2019, Olivier Poirion.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>