a b/docs/_build/html/usage.html
1
2
3
<!DOCTYPE html>
4
<html class="writer-html5" lang="en" >
5
<head>
6
  <meta charset="utf-8" />
7
  
8
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
9
  
10
  <title>Tutorial: Simple DeepProg model &mdash; DeepProg  documentation</title>
11
  
12
13
  
14
  <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
15
  <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
16
17
  
18
  
19
20
  
21
  
22
23
  
24
25
  
26
  <!--[if lt IE 9]>
27
    <script src="_static/js/html5shiv.min.js"></script>
28
  <![endif]-->
29
  
30
    
31
      <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
32
        <script src="_static/jquery.js"></script>
33
        <script src="_static/underscore.js"></script>
34
        <script src="_static/doctools.js"></script>
35
        <script src="_static/language_data.js"></script>
36
    
37
    <script type="text/javascript" src="_static/js/theme.js"></script>
38
39
    
40
    <link rel="index" title="Index" href="genindex.html" />
41
    <link rel="search" title="Search" href="search.html" />
42
    <link rel="next" title="Tutorial: Ensemble of DeepProg model" href="usage_ensemble.html" />
43
    <link rel="prev" title="Installation" href="installation.html" /> 
44
</head>
45
46
<body class="wy-body-for-nav">
47
48
   
49
  <div class="wy-grid-for-nav">
50
    
51
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
52
      <div class="wy-side-scroll">
53
        <div class="wy-side-nav-search" >
54
          
55
56
          
57
            <a href="index.html" class="icon icon-home"> DeepProg
58
          
59
60
          
61
          </a>
62
63
          
64
            
65
            
66
          
67
68
          
69
<div role="search">
70
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
71
    <input type="text" name="q" placeholder="Search docs" />
72
    <input type="hidden" name="check_keywords" value="yes" />
73
    <input type="hidden" name="area" value="default" />
74
  </form>
75
</div>
76
77
          
78
        </div>
79
80
        
81
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
82
          
83
            
84
            
85
              
86
            
87
            
88
              <ul class="current">
89
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
90
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial: Simple DeepProg model</a><ul>
91
<li class="toctree-l2"><a class="reference internal" href="#input-parameters">Input parameters</a></li>
92
<li class="toctree-l2"><a class="reference internal" href="#input-matrices">Input matrices</a></li>
93
<li class="toctree-l2"><a class="reference internal" href="#creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic">Creating a simple DeepProg model with one autoencoder for each omic</a></li>
94
</ul>
95
</li>
96
<li class="toctree-l1"><a class="reference internal" href="usage_ensemble.html">Tutorial: Ensemble of DeepProg model</a></li>
97
<li class="toctree-l1"><a class="reference internal" href="usage_advanced.html">Tutorial: Advanced usage of DeepProg model</a></li>
98
<li class="toctree-l1"><a class="reference internal" href="case_study.html">Case study: Analyzing TCGA HCC dataset</a></li>
99
<li class="toctree-l1"><a class="reference internal" href="LICENSE.html">License</a></li>
100
<li class="toctree-l1"><a class="reference internal" href="api/simdeep.html">simdeep package</a></li>
101
</ul>
102
103
            
104
          
105
        </div>
106
        
107
      </div>
108
    </nav>
109
110
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
111
112
      
113
      <nav class="wy-nav-top" aria-label="top navigation">
114
        
115
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
116
          <a href="index.html">DeepProg</a>
117
        
118
      </nav>
119
120
121
      <div class="wy-nav-content">
122
        
123
        <div class="rst-content">
124
        
125
          
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
<div role="navigation" aria-label="breadcrumbs navigation">
144
145
  <ul class="wy-breadcrumbs">
146
    
147
      <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
148
        
149
      <li>Tutorial: Simple DeepProg model</li>
150
    
151
    
152
      <li class="wy-breadcrumbs-aside">
153
        
154
          
155
            <a href="_sources/usage.md.txt" rel="nofollow"> View page source</a>
156
          
157
        
158
      </li>
159
    
160
  </ul>
161
162
  
163
  <hr/>
164
</div>
165
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
166
           <div itemprop="articleBody">
167
            
168
  <div class="section" id="tutorial-simple-deepprog-model">
169
<h1>Tutorial: Simple DeepProg model<a class="headerlink" href="#tutorial-simple-deepprog-model" title="Permalink to this headline">¶</a></h1>
170
<p>The principle of DeepProg can be summarized as follow:</p>
171
<ul class="simple">
172
<li><p>Loading of multiple samples x OMIC matrices</p></li>
173
<li><p>Preprocessing ,normalisation, and sub-sampling of the input matrices</p></li>
174
<li><p>Matrix transformation using autoencoder</p></li>
175
<li><p>Detection of survival features</p></li>
176
<li><p>Survival feature agglomeration and clustering</p></li>
177
<li><p>Creation of supervised models to predict the output of new samples</p></li>
178
</ul>
179
<div class="section" id="input-parameters">
180
<h2>Input parameters<a class="headerlink" href="#input-parameters" title="Permalink to this headline">¶</a></h2>
181
<p>All the default parameters are defined in the config file: <code class="docutils literal notranslate"><span class="pre">./simdeep/config.py</span></code> but can be passed dynamically. Three types of parameters must be defined:</p>
182
<ul class="simple">
183
<li><p>The training dataset (omics + survival input files)</p>
184
<ul>
185
<li><p>In addition, the parameters of the test set, i.e. the omic dataset and the survival file</p></li>
186
</ul>
187
</li>
188
<li><p>The parameters of the autoencoder (the default parameters works but it might be fine-tuned.</p></li>
189
<li><p>The parameters of the classification procedures (default are still good)</p></li>
190
</ul>
191
</div>
192
<div class="section" id="input-matrices">
193
<h2>Input matrices<a class="headerlink" href="#input-matrices" title="Permalink to this headline">¶</a></h2>
194
<p>As examples, we included two datasets:</p>
195
<ul class="simple">
196
<li><p>A dummy example dataset in the <code class="docutils literal notranslate"><span class="pre">example/data/</span></code> folder:</p></li>
197
</ul>
198
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>examples
199
├── data
200
│   ├── meth_dummy.tsv
201
│   ├── mir_dummy.tsv
202
│   ├── rna_dummy.tsv
203
│   ├── rna_test_dummy.tsv
204
│   ├── survival_dummy.tsv
205
│   └── survival_test_dummy.tsv
206
</pre></div>
207
</div>
208
<ul class="simple">
209
<li><p>And a real dataset in the <code class="docutils literal notranslate"><span class="pre">data</span></code> folder. This dataset derives from the TCGA HCC cancer dataset. This dataset needs to be decompressed before processing:</p></li>
210
</ul>
211
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>data
212
├── meth.tsv.gz
213
├── mir.tsv.gz
214
├── rna.tsv.gz
215
└── survival.tsv
216
</pre></div>
217
</div>
218
<p>An input matrix file should follow this format:</p>
219
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head mir_dummy.tsv
220
221
Samples        dummy_mir_0     dummy_mir_1     dummy_mir_2     dummy_mir_3 ...
222
sample_test_0  <span class="m">0</span>.469656032287  <span class="m">0</span>.347987447237  <span class="m">0</span>.706633335508  <span class="m">0</span>.440068758445 ...
223
sample_test_1  <span class="m">0</span>.0453108219657 <span class="m">0</span>.0234642968791 <span class="m">0</span>.593393816691  <span class="m">0</span>.981872970341 ...
224
sample_test_2  <span class="m">0</span>.908784043793  <span class="m">0</span>.854397550009  <span class="m">0</span>.575879144667  <span class="m">0</span>.553333958713 ...
225
...
226
</pre></div>
227
</div>
228
<p>Also, if multiple matrices are used as input, they must keep the sample order. For example:</p>
229
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head rna_dummy.tsv
230
231
Samples        dummy_gene_0     dummy_gene_1     dummy_gene_2     dummy_gene_3 ...
232
sample_test_0  <span class="m">0</span>.69656032287  <span class="m">0</span>.47987447237  <span class="m">0</span>.06633335508  <span class="m">0</span>.40068758445 ...
233
sample_test_1  <span class="m">0</span>.53108219657 <span class="m">0</span>.234642968791 <span class="m">0</span>.93393816691  <span class="m">0</span>.81872970341 ...
234
sample_test_2  <span class="m">0</span>.8784043793  <span class="m">0</span>.54397550009  <span class="m">0</span>.75879144667  <span class="m">0</span>.53333958713 ...
235
...
236
</pre></div>
237
</div>
238
<p>The  arguments <code class="docutils literal notranslate"><span class="pre">training_tsv</span></code> and <code class="docutils literal notranslate"><span class="pre">path_data</span></code> from the <code class="docutils literal notranslate"><span class="pre">extract_data</span></code> module are used to defined the input matrices.</p>
239
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># The keys/values of this dict represent the name of the omic and the corresponding input matrix</span>
240
<span class="n">training_tsv</span> <span class="o">=</span> <span class="p">{</span>
241
    <span class="s1">&#39;GE&#39;</span><span class="p">:</span> <span class="s1">&#39;rna_dummy.tsv&#39;</span><span class="p">,</span>
242
    <span class="s1">&#39;MIR&#39;</span><span class="p">:</span> <span class="s1">&#39;mir_dummy.tsv&#39;</span><span class="p">,</span>
243
    <span class="s1">&#39;METH&#39;</span><span class="p">:</span> <span class="s1">&#39;meth_dummy.tsv&#39;</span><span class="p">,</span>
244
<span class="p">}</span>
245
</pre></div>
246
</div>
247
<p>a survival file must have this format:</p>
248
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head survival_dummy.tsv
249
250
barcode        days recurrence
251
sample_test_0  <span class="m">134</span>  <span class="m">1</span>
252
sample_test_1  <span class="m">291</span>  <span class="m">0</span>
253
sample_test_2  <span class="m">125</span>  <span class="m">1</span>
254
sample_test_3  <span class="m">43</span>   <span class="m">0</span>
255
...
256
</pre></div>
257
</div>
258
<p>In addition, the fields corresponding to the patient IDs, the survival time, and the event should be defined using the <code class="docutils literal notranslate"><span class="pre">survival_flag</span></code> argument:</p>
259
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1">#Default value</span>
260
<span class="n">survival_flag</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;patient_id&#39;</span><span class="p">:</span> <span class="s1">&#39;barcode&#39;</span><span class="p">,</span>
261
                  <span class="s1">&#39;survival&#39;</span><span class="p">:</span> <span class="s1">&#39;days&#39;</span><span class="p">,</span>
262
                 <span class="s1">&#39;event&#39;</span><span class="p">:</span> <span class="s1">&#39;recurrence&#39;</span><span class="p">}</span>
263
</pre></div>
264
</div>
265
</div>
266
<div class="section" id="creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic">
267
<h2>Creating a simple DeepProg model with one autoencoder for each omic<a class="headerlink" href="#creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic" title="Permalink to this headline">¶</a></h2>
268
<p>First, we will build a model using the example dataset from <code class="docutils literal notranslate"><span class="pre">./examples/data/</span></code> (These example files are set as default in the config.py file). We will use them to show how to construct a single DeepProg model inferring a autoencoder for each omic</p>
269
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span>
270
<span class="c1"># SimDeep class can be used to build one model with one autoencoder for each omic</span>
271
<span class="kn">from</span> <span class="nn">simdeep.simdeep_analysis</span> <span class="kn">import</span> <span class="n">SimDeep</span>
272
<span class="kn">from</span> <span class="nn">simdeep.extract_data</span> <span class="kn">import</span> <span class="n">LoadData</span>
273
274
<span class="n">help</span><span class="p">(</span><span class="n">SimDeep</span><span class="p">)</span> <span class="c1"># to see all the functions</span>
275
<span class="n">help</span><span class="p">(</span><span class="n">LoadData</span><span class="p">)</span> <span class="c1"># to see all the functions related to loading datasets</span>
276
277
<span class="c1"># Defining training datasets</span>
278
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">TRAINING_TSV</span>
279
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">SURVIVAL_TSV</span>
280
<span class="c1"># Location of the input matrices and survival file</span>
281
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">PATH_DATA</span>
282
283
<span class="n">dataset</span> <span class="o">=</span> <span class="n">LoadData</span><span class="p">(</span><span class="n">training_tsv</span><span class="o">=</span><span class="n">TRAINING_TSV</span><span class="p">,</span>
284
        <span class="n">survival_tsv</span><span class="o">=</span><span class="n">SURVIVAL_TSV</span><span class="p">,</span>
285
        <span class="n">path_data</span><span class="o">=</span><span class="n">PATH_DATA</span><span class="p">)</span>
286
287
<span class="c1"># Defining the result path in which will be created an output folder</span>
288
<span class="n">PATH_RESULTS</span> <span class="o">=</span> <span class="s2">&quot;./TEST_DUMMY/&quot;</span>
289
290
<span class="c1"># instantiate the model with the dummy example training dataset defined in the config file</span>
291
<span class="n">simDeep</span> <span class="o">=</span> <span class="n">SimDeep</span><span class="p">(</span>
292
        <span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span><span class="p">,</span>
293
        <span class="n">path_results</span><span class="o">=</span><span class="n">PATH_RESULTS</span><span class="p">,</span>
294
        <span class="n">path_to_save_modelPATH_RESULTS</span><span class="p">,</span> <span class="c1"># This result path can be used to save the autoencoder</span>
295
        <span class="p">)</span>
296
297
<span class="n">simDeep</span><span class="o">.</span><span class="n">load_training_dataset</span><span class="p">()</span> <span class="c1"># load the training dataset</span>
298
<span class="n">simDeep</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="c1"># fit the model</span>
299
</pre></div>
300
</div>
301
<p>At that point, the model is fitted and some output files are available in the output folder:</p>
302
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>TEST_DUMMY
303
├── test_dummy_dataset_KM_plot_training_dataset.png
304
└── test_dummy_dataset_training_set_labels.tsv
305
</pre></div>
306
</div>
307
<p>The tsv file contains the label and the label probability for each sample:</p>
308
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>sample_test_0   <span class="m">1</span>       <span class="m">7</span>.22678272919e-12
309
sample_test_1   <span class="m">1</span>       <span class="m">4</span>.48594196888e-09
310
sample_test_4   <span class="m">1</span>       <span class="m">1</span>.53363205571e-06
311
sample_test_5   <span class="m">1</span>       <span class="m">6</span>.72170409655e-08
312
sample_test_6   <span class="m">0</span>       <span class="m">0</span>.9996581662
313
sample_test_7   <span class="m">1</span>       <span class="m">3</span>.38139255666e-08
314
</pre></div>
315
</div>
316
<p>And we also have the visualisation of a Kaplan-Meier Curve:</p>
317
<p><img alt="KM plot" src="_images/test_dummy_dataset_KM_plot_training_dataset.png" /></p>
318
<p>Now we are ready to use a test dataset and to infer the class label for the test samples.
319
The test dataset do not need to have the same input omic matrices than the training dataset and not even the sample features for a given omic. However, it needs to have at least some features in common.</p>
320
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Defining test datasets</span>
321
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">TEST_TSV</span>
322
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">SURVIVAL_TSV_TEST</span>
323
324
<span class="n">simDeep</span><span class="o">.</span><span class="n">load_new_test_dataset</span><span class="p">(</span>
325
    <span class="n">TEST_TSV</span><span class="p">,</span>
326
    <span class="n">fname_key</span><span class="o">=</span><span class="s1">&#39;dummy&#39;</span>
327
    <span class="n">SURVIVAL_TSV_TEST</span><span class="p">,</span> <span class="c1"># [OPTIONAL] test survival file useful to compute accuracy of test dataset</span>
328
329
    <span class="p">)</span>
330
331
<span class="c1"># The test set is a dummy rna expression (generated randomly)</span>
332
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">test_tsv</span><span class="p">)</span> <span class="c1"># Defined in the config file</span>
333
<span class="c1"># The data type of the test set is also defined to match an existing type</span>
334
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">data_type</span><span class="p">)</span> <span class="c1"># Defined in the config file</span>
335
<span class="n">simDeep</span><span class="o">.</span><span class="n">predict_labels_on_test_dataset</span><span class="p">()</span> <span class="c1"># Perform the classification analysis and label the set dataset</span>
336
337
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">test_labels</span><span class="p">)</span>
338
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">test_labels_proba</span><span class="p">)</span>
339
</pre></div>
340
</div>
341
<p>The assigned class and class probabilities for the test samples are now available in the output folder:</p>
342
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>TEST_DUMMY
343
├── test_dummy_dataset_dummy_KM_plot_test.png
344
├── test_dummy_dataset_dummy_test_labels.tsv
345
├── test_dummy_dataset_KM_plot_training_dataset.png
346
└── test_dummy_dataset_training_set_labels.tsv
347
348
head test_dummy_dataset_training_set_labels.tsv
349
</pre></div>
350
</div>
351
<p>And a KM plot is also constructed using the test labels</p>
352
<p><img alt="KM plot test" src="_images/test_dummy_dataset_dummy_KM_plot_test.png" /></p>
353
<p>Finally, it is possible to save the keras model:</p>
354
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">simDeep</span><span class="o">.</span><span class="n">save_encoders</span><span class="p">(</span><span class="s1">&#39;dummy_encoder.h5&#39;</span><span class="p">)</span>
355
</pre></div>
356
</div>
357
</div>
358
</div>
359
360
361
           </div>
362
           
363
          </div>
364
          <footer>
365
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
366
        <a href="usage_ensemble.html" class="btn btn-neutral float-right" title="Tutorial: Ensemble of DeepProg model" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
367
        <a href="installation.html" class="btn btn-neutral float-left" title="Installation" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
368
    </div>
369
370
  <hr/>
371
372
  <div role="contentinfo">
373
    <p>
374
        &#169; Copyright 2019, Olivier Poirion.
375
376
    </p>
377
  </div>
378
    
379
    
380
    
381
    Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
382
    
383
    <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
384
    
385
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 
386
387
</footer>
388
        </div>
389
      </div>
390
391
    </section>
392
393
  </div>
394
  
395
396
  <script type="text/javascript">
397
      jQuery(function () {
398
          SphinxRtdTheme.Navigation.enable(true);
399
      });
400
  </script>
401
402
  
403
  
404
    
405
   
406
407
</body>
408
</html>