<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Tutorial: Simple DeepProg model — DeepProg documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Tutorial: Ensemble of DeepProg model" href="usage_ensemble.html" />
<link rel="prev" title="Installation" href="installation.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home"> DeepProg
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial: Simple DeepProg model</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#input-parameters">Input parameters</a></li>
<li class="toctree-l2"><a class="reference internal" href="#input-matrices">Input matrices</a></li>
<li class="toctree-l2"><a class="reference internal" href="#creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic">Creating a simple DeepProg model with one autoencoder for each omic</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="usage_ensemble.html">Tutorial: Ensemble of DeepProg model</a></li>
<li class="toctree-l1"><a class="reference internal" href="usage_advanced.html">Tutorial: Advanced usage of DeepProg model</a></li>
<li class="toctree-l1"><a class="reference internal" href="case_study.html">Case study: Analyzing TCGA HCC dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="LICENSE.html">License</a></li>
<li class="toctree-l1"><a class="reference internal" href="api/simdeep.html">simdeep package</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">DeepProg</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home"></a> »</li>
<li>Tutorial: Simple DeepProg model</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/usage.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="tutorial-simple-deepprog-model">
<h1>Tutorial: Simple DeepProg model<a class="headerlink" href="#tutorial-simple-deepprog-model" title="Permalink to this headline">¶</a></h1>
<p>The principle of DeepProg can be summarized as follow:</p>
<ul class="simple">
<li><p>Loading of multiple samples x OMIC matrices</p></li>
<li><p>Preprocessing ,normalisation, and sub-sampling of the input matrices</p></li>
<li><p>Matrix transformation using autoencoder</p></li>
<li><p>Detection of survival features</p></li>
<li><p>Survival feature agglomeration and clustering</p></li>
<li><p>Creation of supervised models to predict the output of new samples</p></li>
</ul>
<div class="section" id="input-parameters">
<h2>Input parameters<a class="headerlink" href="#input-parameters" title="Permalink to this headline">¶</a></h2>
<p>All the default parameters are defined in the config file: <code class="docutils literal notranslate"><span class="pre">./simdeep/config.py</span></code> but can be passed dynamically. Three types of parameters must be defined:</p>
<ul class="simple">
<li><p>The training dataset (omics + survival input files)</p>
<ul>
<li><p>In addition, the parameters of the test set, i.e. the omic dataset and the survival file</p></li>
</ul>
</li>
<li><p>The parameters of the autoencoder (the default parameters works but it might be fine-tuned.</p></li>
<li><p>The parameters of the classification procedures (default are still good)</p></li>
</ul>
</div>
<div class="section" id="input-matrices">
<h2>Input matrices<a class="headerlink" href="#input-matrices" title="Permalink to this headline">¶</a></h2>
<p>As examples, we included two datasets:</p>
<ul class="simple">
<li><p>A dummy example dataset in the <code class="docutils literal notranslate"><span class="pre">example/data/</span></code> folder:</p></li>
</ul>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>examples
├── data
│ ├── meth_dummy.tsv
│ ├── mir_dummy.tsv
│ ├── rna_dummy.tsv
│ ├── rna_test_dummy.tsv
│ ├── survival_dummy.tsv
│ └── survival_test_dummy.tsv
</pre></div>
</div>
<ul class="simple">
<li><p>And a real dataset in the <code class="docutils literal notranslate"><span class="pre">data</span></code> folder. This dataset derives from the TCGA HCC cancer dataset. This dataset needs to be decompressed before processing:</p></li>
</ul>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>data
├── meth.tsv.gz
├── mir.tsv.gz
├── rna.tsv.gz
└── survival.tsv
</pre></div>
</div>
<p>An input matrix file should follow this format:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head mir_dummy.tsv
Samples dummy_mir_0 dummy_mir_1 dummy_mir_2 dummy_mir_3 ...
sample_test_0 <span class="m">0</span>.469656032287 <span class="m">0</span>.347987447237 <span class="m">0</span>.706633335508 <span class="m">0</span>.440068758445 ...
sample_test_1 <span class="m">0</span>.0453108219657 <span class="m">0</span>.0234642968791 <span class="m">0</span>.593393816691 <span class="m">0</span>.981872970341 ...
sample_test_2 <span class="m">0</span>.908784043793 <span class="m">0</span>.854397550009 <span class="m">0</span>.575879144667 <span class="m">0</span>.553333958713 ...
...
</pre></div>
</div>
<p>Also, if multiple matrices are used as input, they must keep the sample order. For example:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head rna_dummy.tsv
Samples dummy_gene_0 dummy_gene_1 dummy_gene_2 dummy_gene_3 ...
sample_test_0 <span class="m">0</span>.69656032287 <span class="m">0</span>.47987447237 <span class="m">0</span>.06633335508 <span class="m">0</span>.40068758445 ...
sample_test_1 <span class="m">0</span>.53108219657 <span class="m">0</span>.234642968791 <span class="m">0</span>.93393816691 <span class="m">0</span>.81872970341 ...
sample_test_2 <span class="m">0</span>.8784043793 <span class="m">0</span>.54397550009 <span class="m">0</span>.75879144667 <span class="m">0</span>.53333958713 ...
...
</pre></div>
</div>
<p>The arguments <code class="docutils literal notranslate"><span class="pre">training_tsv</span></code> and <code class="docutils literal notranslate"><span class="pre">path_data</span></code> from the <code class="docutils literal notranslate"><span class="pre">extract_data</span></code> module are used to defined the input matrices.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># The keys/values of this dict represent the name of the omic and the corresponding input matrix</span>
<span class="n">training_tsv</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">'GE'</span><span class="p">:</span> <span class="s1">'rna_dummy.tsv'</span><span class="p">,</span>
<span class="s1">'MIR'</span><span class="p">:</span> <span class="s1">'mir_dummy.tsv'</span><span class="p">,</span>
<span class="s1">'METH'</span><span class="p">:</span> <span class="s1">'meth_dummy.tsv'</span><span class="p">,</span>
<span class="p">}</span>
</pre></div>
</div>
<p>a survival file must have this format:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>head survival_dummy.tsv
barcode days recurrence
sample_test_0 <span class="m">134</span> <span class="m">1</span>
sample_test_1 <span class="m">291</span> <span class="m">0</span>
sample_test_2 <span class="m">125</span> <span class="m">1</span>
sample_test_3 <span class="m">43</span> <span class="m">0</span>
...
</pre></div>
</div>
<p>In addition, the fields corresponding to the patient IDs, the survival time, and the event should be defined using the <code class="docutils literal notranslate"><span class="pre">survival_flag</span></code> argument:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1">#Default value</span>
<span class="n">survival_flag</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'patient_id'</span><span class="p">:</span> <span class="s1">'barcode'</span><span class="p">,</span>
<span class="s1">'survival'</span><span class="p">:</span> <span class="s1">'days'</span><span class="p">,</span>
<span class="s1">'event'</span><span class="p">:</span> <span class="s1">'recurrence'</span><span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic">
<h2>Creating a simple DeepProg model with one autoencoder for each omic<a class="headerlink" href="#creating-a-simple-deepprog-model-with-one-autoencoder-for-each-omic" title="Permalink to this headline">¶</a></h2>
<p>First, we will build a model using the example dataset from <code class="docutils literal notranslate"><span class="pre">./examples/data/</span></code> (These example files are set as default in the config.py file). We will use them to show how to construct a single DeepProg model inferring a autoencoder for each omic</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span>
<span class="c1"># SimDeep class can be used to build one model with one autoencoder for each omic</span>
<span class="kn">from</span> <span class="nn">simdeep.simdeep_analysis</span> <span class="kn">import</span> <span class="n">SimDeep</span>
<span class="kn">from</span> <span class="nn">simdeep.extract_data</span> <span class="kn">import</span> <span class="n">LoadData</span>
<span class="n">help</span><span class="p">(</span><span class="n">SimDeep</span><span class="p">)</span> <span class="c1"># to see all the functions</span>
<span class="n">help</span><span class="p">(</span><span class="n">LoadData</span><span class="p">)</span> <span class="c1"># to see all the functions related to loading datasets</span>
<span class="c1"># Defining training datasets</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">TRAINING_TSV</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">SURVIVAL_TSV</span>
<span class="c1"># Location of the input matrices and survival file</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">PATH_DATA</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">LoadData</span><span class="p">(</span><span class="n">training_tsv</span><span class="o">=</span><span class="n">TRAINING_TSV</span><span class="p">,</span>
<span class="n">survival_tsv</span><span class="o">=</span><span class="n">SURVIVAL_TSV</span><span class="p">,</span>
<span class="n">path_data</span><span class="o">=</span><span class="n">PATH_DATA</span><span class="p">)</span>
<span class="c1"># Defining the result path in which will be created an output folder</span>
<span class="n">PATH_RESULTS</span> <span class="o">=</span> <span class="s2">"./TEST_DUMMY/"</span>
<span class="c1"># instantiate the model with the dummy example training dataset defined in the config file</span>
<span class="n">simDeep</span> <span class="o">=</span> <span class="n">SimDeep</span><span class="p">(</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span><span class="p">,</span>
<span class="n">path_results</span><span class="o">=</span><span class="n">PATH_RESULTS</span><span class="p">,</span>
<span class="n">path_to_save_modelPATH_RESULTS</span><span class="p">,</span> <span class="c1"># This result path can be used to save the autoencoder</span>
<span class="p">)</span>
<span class="n">simDeep</span><span class="o">.</span><span class="n">load_training_dataset</span><span class="p">()</span> <span class="c1"># load the training dataset</span>
<span class="n">simDeep</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="c1"># fit the model</span>
</pre></div>
</div>
<p>At that point, the model is fitted and some output files are available in the output folder:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>TEST_DUMMY
├── test_dummy_dataset_KM_plot_training_dataset.png
└── test_dummy_dataset_training_set_labels.tsv
</pre></div>
</div>
<p>The tsv file contains the label and the label probability for each sample:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>sample_test_0 <span class="m">1</span> <span class="m">7</span>.22678272919e-12
sample_test_1 <span class="m">1</span> <span class="m">4</span>.48594196888e-09
sample_test_4 <span class="m">1</span> <span class="m">1</span>.53363205571e-06
sample_test_5 <span class="m">1</span> <span class="m">6</span>.72170409655e-08
sample_test_6 <span class="m">0</span> <span class="m">0</span>.9996581662
sample_test_7 <span class="m">1</span> <span class="m">3</span>.38139255666e-08
</pre></div>
</div>
<p>And we also have the visualisation of a Kaplan-Meier Curve:</p>
<p><img alt="KM plot" src="_images/test_dummy_dataset_KM_plot_training_dataset.png" /></p>
<p>Now we are ready to use a test dataset and to infer the class label for the test samples.
The test dataset do not need to have the same input omic matrices than the training dataset and not even the sample features for a given omic. However, it needs to have at least some features in common.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Defining test datasets</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">TEST_TSV</span>
<span class="kn">from</span> <span class="nn">simdeep.config</span> <span class="kn">import</span> <span class="n">SURVIVAL_TSV_TEST</span>
<span class="n">simDeep</span><span class="o">.</span><span class="n">load_new_test_dataset</span><span class="p">(</span>
<span class="n">TEST_TSV</span><span class="p">,</span>
<span class="n">fname_key</span><span class="o">=</span><span class="s1">'dummy'</span>
<span class="n">SURVIVAL_TSV_TEST</span><span class="p">,</span> <span class="c1"># [OPTIONAL] test survival file useful to compute accuracy of test dataset</span>
<span class="p">)</span>
<span class="c1"># The test set is a dummy rna expression (generated randomly)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">test_tsv</span><span class="p">)</span> <span class="c1"># Defined in the config file</span>
<span class="c1"># The data type of the test set is also defined to match an existing type</span>
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">data_type</span><span class="p">)</span> <span class="c1"># Defined in the config file</span>
<span class="n">simDeep</span><span class="o">.</span><span class="n">predict_labels_on_test_dataset</span><span class="p">()</span> <span class="c1"># Perform the classification analysis and label the set dataset</span>
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">test_labels</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">simDeep</span><span class="o">.</span><span class="n">test_labels_proba</span><span class="p">)</span>
</pre></div>
</div>
<p>The assigned class and class probabilities for the test samples are now available in the output folder:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>TEST_DUMMY
├── test_dummy_dataset_dummy_KM_plot_test.png
├── test_dummy_dataset_dummy_test_labels.tsv
├── test_dummy_dataset_KM_plot_training_dataset.png
└── test_dummy_dataset_training_set_labels.tsv
head test_dummy_dataset_training_set_labels.tsv
</pre></div>
</div>
<p>And a KM plot is also constructed using the test labels</p>
<p><img alt="KM plot test" src="_images/test_dummy_dataset_dummy_KM_plot_test.png" /></p>
<p>Finally, it is possible to save the keras model:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">simDeep</span><span class="o">.</span><span class="n">save_encoders</span><span class="p">(</span><span class="s1">'dummy_encoder.h5'</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="usage_ensemble.html" class="btn btn-neutral float-right" title="Tutorial: Ensemble of DeepProg model" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="installation.html" class="btn btn-neutral float-left" title="Installation" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2019, Olivier Poirion.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>