31 lines (31 with data), 11.3 kB
ÇĽ, îsphinx.addnodesöîdocumentöôö)üö}ö(î rawsourceöî öîchildrenö]ö(îdocutils.nodesöîcommentöôö)üö}ö(hî═DeepProg documentation master file, created by
sphinx-quickstart on Fri Dec 6 13:53:29 2019.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.öh]öh îTextöôöî═DeepProg documentation master file, created by
sphinx-quickstart on Fri Dec 6 13:53:29 2019.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.öůöüö}ö(hhîparentöhubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öî xml:spaceöîpreserveöuîtagnameöh
hhhhîsourceöî(/home/oliver/code/SimDeep/docs/index.rstöîlineöKubh îsectionöôö)üö}ö(hhh]ö(h îtitleöôö)üö}ö(hî$Welcome to DeepProg's documentation!öh]öhî&Welcome to DeepProgÔÇÖs documentation!öůöüö}ö(hh2hh0hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hh+hhh&h'h(Kubh îcompoundöôö)üö}ö(hhh]öh îtoctreeöôö)üö}ö(hhh]öh}ö(h]öh]öh]öh]öh!]öhîindexöîentriesö]ö(NîinstallationöćöNîusageöćöNîusage_ensembleöćöNîusage_advancedöćöNî
case_studyöćöNîusage_tuningöćöNîLICENSEöćöNîapi/simdeepöćöeîincludefilesö]ö(hQhShUhWhYh[h]h_eîmaxdepthöKîcaptionöNîgloböëîhiddenöëî
includehiddenöëînumberedöK î
titlesonlyöëî
rawentriesö]öuh%hCh&h'h(K hh@ubah}ö(h]öh]öîtoctree-wrapperöah]öh]öh!]öuh%h>hh+hhh&h'h(Nubh*)üö}ö(hhh]ö(h/)üö}ö(hîIntroductionöh]öhîIntroductionöůöüö}ö(hhxhhvhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hhshhh&h'h(Kubh î paragraphöôö)üö}ö(hX< This package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the *out-of-bags* samples. The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öh]ö(hXŰ This package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the öůöüö}ö(hXŰ This package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the öhhćhhh&Nh(Nubh îemphasisöôö)üö}ö(hî
*out-of-bags*öh]öhîout-of-bagsöůöüö}ö(hhhhĹubah}ö(h]öh]öh]öh]öh!]öuh%hĆhhćubhXD samples. The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öůöüö}ö(hXD samples. The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öhhćhhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(Khhshhubh îimageöôö)üö}ö(hî.. image:: ./img/workflow.png
öh]öh}ö(h]öh]öh]öh]öh!]öîuriöî./img/workflow.pngöî
candidatesö}öî*öhĚsuh%h¬hhshhh&h'h(Kubeh}ö(h]öîintroductionöah]öh]öîintroductionöah]öh!]öuh%h)hh+hhh&h'h(Kubh*)üö}ö(hhh]ö(h/)üö}ö(hîAccessöh]öhîAccessöůöüö}ö(hh╚hhĂhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hh├hhh&h'h(Kubhů)üö}ö(hîPThe package is accessible at this link: https://github.com/lanagarmire/DeepProg.öh]ö(hî(The package is accessible at this link: öůöüö}ö(hî(The package is accessible at this link: öhhďhhh&Nh(Nubh î referenceöôö)üö}ö(hî'https://github.com/lanagarmire/DeepProgöh]öhî'https://github.com/lanagarmire/DeepProgöůöüö}ö(hhhh▀ubah}ö(h]öh]öh]öh]öh!]öîrefuriöhßuh%hŢhhďubhî.öůöüö}ö(hî.öhhďhhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K!hh├hhubeh}ö(h]öîaccessöah]öh]öîaccessöah]öh!]öuh%h)hh+hhh&h'h(Kubh*)üö}ö(hhh]ö(h/)üö}ö(hî
Contributeöh]öhî
Contributeöůöüö}ö(hj hj hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hj hhh&h'h(K$ubh îbullet_listöôö)üö}ö(hhh]ö(h î list_itemöôö)üö}ö(hî5Issue Tracker: github.com/lanagarmire/DeepProg/issuesöh]öhů)üö}ö(hj h]öhî5Issue Tracker: github.com/lanagarmire/DeepProg/issuesöůöüö}ö(hj hj ubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K&hj ubah}ö(h]öh]öh]öh]öh!]öuh%j hj hhh&h'h(Nubj )üö}ö(hî-Source Code: github.com/lanagarmire/DeepProg
öh]öhů)üö}ö(hî,Source Code: github.com/lanagarmire/DeepProgöh]öhî,Source Code: github.com/lanagarmire/DeepProgöůöüö}ö(hj6 hj4 ubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K'hj0 ubah}ö(h]öh]öh]öh]öh!]öuh%j hj hhh&h'h(Nubeh}ö(h]öh]öh]öh]öh!]öîbulletöî-öuh%j h&h'h(K&hj hhubeh}ö(h]öî
contributeöah]öh]öî
contributeöah]öh!]öuh%h)hh+hhh&h'h(K$ubh*)üö}ö(hhh]ö(h/)üö}ö(hîSupportöh]öhîSupportöůöüö}ö(hj] hj[ hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hjX hhh&h'h(K*ubhů)üö}ö(hîaIf you are having issues, please let us know.
You can reach us using the following email address:öh]öhîaIf you are having issues, please let us know.
You can reach us using the following email address:öůöüö}ö(hjk hji hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K,hjX hhubhů)üö}ö(hî*Olivier Poirion, Ph.D.
o.poirion@gmail.comöh]ö(hîOlivier Poirion, Ph.D.
öůöüö}ö(hîOlivier Poirion, Ph.D.
öhjw hhh&Nh(NubhŮ)üö}ö(hîo.poirion@gmail.comöh]öhîo.poirion@gmail.comöůöüö}ö(hhhjÇ ubah}ö(h]öh]öh]öh]öh!]öîrefuriöîmailto:o.poirion@gmail.comöuh%hŢhjw ubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K/hjX hhubeh}ö(h]öîsupportöah]öh]öîsupportöah]öh!]öuh%h)hh+hhh&h'h(K*ubh*)üö}ö(hhh]ö(h/)üö}ö(hîCitationöh]öhîCitationöůöüö}ö(hjú hjí hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hj× hhh&h'h(K3ubhů)üö}ö(hîĐThis package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](https://www.medrxiv.org/content/10.1101/19010082v1)öh]ö(hî×This package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](öůöüö}ö(hî×This package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](öhj» hhh&Nh(NubhŮ)üö}ö(hî2https://www.medrxiv.org/content/10.1101/19010082v1öh]öhî2https://www.medrxiv.org/content/10.1101/19010082v1öůöüö}ö(hhhjŞ ubah}ö(h]öh]öh]öh]öh!]öîrefuriöj║ uh%hŢhj» ubhî)öůöüö}ö(hî)öhj» hhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K5hj× hhubeh}ö(h]öîcitationöah]öh]öîcitationöah]öh!]öuh%h)hh+hhh&h'h(K3ubh*)üö}ö(hhh]ö(h/)üö}ö(hîLicenseöh]öhîLicenseöůöüö}ö(hj▀ hjŢ hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hj┌ hhh&h'h(K8ubhů)üö}ö(hî.The project is licensed under the MIT license.öh]öhî.The project is licensed under the MIT license.öůöüö}ö(hjÝ hjŰ hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K:hj┌ hhubeh}ö(h]öîlicenseöah]öh]öîlicenseöah]öh!]öuh%h)hh+hhh&h'h(K8ubeh}ö(h]öî#welcome-to-deepprog-s-documentationöah]öh]öî$welcome to deepprog's documentation!öah]öh!]öuh%h)hhhhh&h'h(Kubeh}ö(h]öh]öh]öh]öh!]öîsourceöh'uh%hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(h.Nî generatoröNî datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî tracebacköłîinput_encodingöî utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröj, îerror_encodingöîutf-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh'î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(j j h└hŻh■hűjU jR jŤ jś jÎ jď j■ jű uî nametypesö}ö(j Nh└Nh■NjU NjŤ NjÎ Nj■ Nuh}ö(j h+hŻhshűh├jR j jś jX jď j× jű j┌ uî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî footnotesö]öî citationsö]öîautofootnote_startöKîsymbol_footnote_startöK î
id_counteröîcollectionsöîCounteröôö}öůöRöîparse_messagesö]öîtransform_messagesö]öîtransformeröNî
decorationöNhhub.