[53737a]: / docs / _build / doctrees / index.doctree

Download this file

31 lines (31 with data), 11.3 kB

ÇĽ,îsphinx.addnodesöîdocumentöôö)üö}ö(î	rawsourceöîöîchildrenö]ö(îdocutils.nodesöîcommentöôö)üö}ö(hî═DeepProg documentation master file, created by
sphinx-quickstart on Fri Dec  6 13:53:29 2019.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.öh]öh	îTextöôöî═DeepProg documentation master file, created by
sphinx-quickstart on Fri Dec  6 13:53:29 2019.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.öůöüö}ö(hhîparentöhubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öî	xml:spaceöîpreserveöuîtagnameöh
hhhhîsourceöî(/home/oliver/code/SimDeep/docs/index.rstöîlineöKubh	îsectionöôö)üö}ö(hhh]ö(h	îtitleöôö)üö}ö(hî$Welcome to DeepProg's documentation!öh]öhî&Welcome to DeepProgÔÇÖs documentation!öůöüö}ö(hh2hh0hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hh+hhh&h'h(Kubh	îcompoundöôö)üö}ö(hhh]öhîtoctreeöôö)üö}ö(hhh]öh}ö(h]öh]öh]öh]öh!]öhîindexöîentriesö]ö(NîinstallationöćöNîusageöćöNîusage_ensembleöćöNîusage_advancedöćöNî
case_studyöćöNîusage_tuningöćöNîLICENSEöćöNîapi/simdeepöćöeîincludefilesö]ö(hQhShUhWhYh[h]h_eîmaxdepthöKîcaptionöNîgloböëîhiddenöëî
includehiddenöëînumberedöKî
titlesonlyöëî
rawentriesö]öuh%hCh&h'h(K	hh@ubah}ö(h]öh]öîtoctree-wrapperöah]öh]öh!]öuh%h>hh+hhh&h'h(Nubh*)üö}ö(hhh]ö(h/)üö}ö(hîIntroductionöh]öhîIntroductionöůöüö}ö(hhxhhvhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hhshhh&h'h(Kubh	î	paragraphöôö)üö}ö(hX<This package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the *out-of-bags* samples.  The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öh]ö(hXŰThis package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the öůöüö}ö(hXŰThis package allows to combine multi-omics data for individual samples together with survival. Using autoencoders (default) or any alternative embedding methods, the pipeline creates new set of features and identifies those linked with survival. In a second time, the samples are clustered with different possible strategies to obtain robust subtypes linked to survival. The robustness of the obtained subtypes can then be tested externally on one or multiple validation datasets and/or the öhhćhhh&Nh(Nubh	îemphasisöôö)üö}ö(hî
*out-of-bags*öh]öhîout-of-bagsöůöüö}ö(hhhhĹubah}ö(h]öh]öh]öh]öh!]öuh%hĆhhćubhXD samples.  The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öůöüö}ö(hXD samples.  The omic data used in the original study are RNA-Seq, MiR and Methylation. However, this approach can be extended to any combination of omic data. The current package contains the omic data used in the study and a copy of the model computed. However, it is easy to recreate a new model from scratch using any combination of omic data.
The omic data and the survival files should be in tsv (Tabular Separated Values) format and examples are provided. The deep-learning framework to produce the autoencoders uses Keras with either Theano / tensorflow/ CNTK as background.öhhćhhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(Khhshhubh	îimageöôö)üö}ö(hî.. image:: ./img/workflow.png
öh]öh}ö(h]öh]öh]öh]öh!]öîuriöî./img/workflow.pngöî
candidatesö}öî*öhĚsuh%h¬hhshhh&h'h(Kubeh}ö(h]öîintroductionöah]öh]öîintroductionöah]öh!]öuh%h)hh+hhh&h'h(Kubh*)üö}ö(hhh]ö(h/)üö}ö(hîAccessöh]öhîAccessöůöüö}ö(hh╚hhĂhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hh├hhh&h'h(Kubhů)üö}ö(hîPThe package is accessible at this link: https://github.com/lanagarmire/DeepProg.öh]ö(hî(The package is accessible at this link: öůöüö}ö(hî(The package is accessible at this link: öhhďhhh&Nh(Nubh	î	referenceöôö)üö}ö(hî'https://github.com/lanagarmire/DeepProgöh]öhî'https://github.com/lanagarmire/DeepProgöůöüö}ö(hhhh▀ubah}ö(h]öh]öh]öh]öh!]öîrefuriöhßuh%hŢhhďubhî.öůöüö}ö(hî.öhhďhhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K!hh├hhubeh}ö(h]öîaccessöah]öh]öîaccessöah]öh!]öuh%h)hh+hhh&h'h(Kubh*)üö}ö(hhh]ö(h/)üö}ö(hî
Contributeöh]öhî
Contributeöůöüö}ö(hjhjhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hjhhh&h'h(K$ubh	îbullet_listöôö)üö}ö(hhh]ö(h	î	list_itemöôö)üö}ö(hî5Issue Tracker: github.com/lanagarmire/DeepProg/issuesöh]öhů)üö}ö(hjh]öhî5Issue Tracker: github.com/lanagarmire/DeepProg/issuesöůöüö}ö(hjhjubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K&hjubah}ö(h]öh]öh]öh]öh!]öuh%jhjhhh&h'h(Nubj)üö}ö(hî-Source Code: github.com/lanagarmire/DeepProg
öh]öhů)üö}ö(hî,Source Code: github.com/lanagarmire/DeepProgöh]öhî,Source Code: github.com/lanagarmire/DeepProgöůöüö}ö(hj6hj4ubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K'hj0ubah}ö(h]öh]öh]öh]öh!]öuh%jhjhhh&h'h(Nubeh}ö(h]öh]öh]öh]öh!]öîbulletöî-öuh%jh&h'h(K&hjhhubeh}ö(h]öî
contributeöah]öh]öî
contributeöah]öh!]öuh%h)hh+hhh&h'h(K$ubh*)üö}ö(hhh]ö(h/)üö}ö(hîSupportöh]öhîSupportöůöüö}ö(hj]hj[hhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hjXhhh&h'h(K*ubhů)üö}ö(hîaIf you are having issues, please let us know.
You can reach us using the following email address:öh]öhîaIf you are having issues, please let us know.
You can reach us using the following email address:öůöüö}ö(hjkhjihhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K,hjXhhubhů)üö}ö(hî*Olivier Poirion, Ph.D.
o.poirion@gmail.comöh]ö(hîOlivier Poirion, Ph.D.
öůöüö}ö(hîOlivier Poirion, Ph.D.
öhjwhhh&Nh(NubhŮ)üö}ö(hîo.poirion@gmail.comöh]öhîo.poirion@gmail.comöůöüö}ö(hhhjÇubah}ö(h]öh]öh]öh]öh!]öîrefuriöîmailto:o.poirion@gmail.comöuh%hŢhjwubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K/hjXhhubeh}ö(h]öîsupportöah]öh]öîsupportöah]öh!]öuh%h)hh+hhh&h'h(K*ubh*)üö}ö(hhh]ö(h/)üö}ö(hîCitationöh]öhîCitationöůöüö}ö(hjúhjíhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hj×hhh&h'h(K3ubhů)üö}ö(hîĐThis package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](https://www.medrxiv.org/content/10.1101/19010082v1)öh]ö(hî×This package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](öůöüö}ö(hî×This package refers to our preprint paper: [Multi-omics-based pan-cancer prognosis prediction using an ensemble of deep-learning and machine-learning models](öhj»hhh&Nh(NubhŮ)üö}ö(hî2https://www.medrxiv.org/content/10.1101/19010082v1öh]öhî2https://www.medrxiv.org/content/10.1101/19010082v1öůöüö}ö(hhhjŞubah}ö(h]öh]öh]öh]öh!]öîrefuriöj║uh%hŢhj»ubhî)öůöüö}ö(hî)öhj»hhh&Nh(Nubeh}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K5hj×hhubeh}ö(h]öîcitationöah]öh]öîcitationöah]öh!]öuh%h)hh+hhh&h'h(K3ubh*)üö}ö(hhh]ö(h/)üö}ö(hîLicenseöh]öhîLicenseöůöüö}ö(hj▀hjŢhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%h.hj┌hhh&h'h(K8ubhů)üö}ö(hî.The project is licensed under the MIT license.öh]öhî.The project is licensed under the MIT license.öůöüö}ö(hjÝhjŰhhh&Nh(Nubah}ö(h]öh]öh]öh]öh!]öuh%häh&h'h(K:hj┌hhubeh}ö(h]öîlicenseöah]öh]öîlicenseöah]öh!]öuh%h)hh+hhh&h'h(K8ubeh}ö(h]öî#welcome-to-deepprog-s-documentationöah]öh]öî$welcome to deepprog's documentation!öah]öh!]öuh%h)hhhhh&h'h(Kubeh}ö(h]öh]öh]öh]öh!]öîsourceöh'uh%hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(h.Nî	generatoröNî	datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî	tracebacköłîinput_encodingöî	utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröj,îerror_encodingöîutf-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî	id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh'î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî	tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(jjh└hŻh■hűjUjRjŤjśjÎjďj■jűuî	nametypesö}ö(jNh└Nh■NjUNjŤNjÎNj■Nuh}ö(jh+hŻhshűh├jRjjśjXjďj×jűj┌uî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî	footnotesö]öî	citationsö]öîautofootnote_startöKîsymbol_footnote_startöKî
id_counteröîcollectionsöîCounteröôö}öůöRöîparse_messagesö]öîtransform_messagesö]öîtransformeröNî
decorationöNhhub.