import warnings
warnings.filterwarnings('ignore')
import numpy as np
import tensorflow as tf
import random
import sys, os
from sklearn.model_selection import train_test_split
import import_data as impt
from helper import f_get_minibatch_set, evaluate
from class_DeepIMV_AISTATS import DeepIMV_AISTATS
import argparse
def init_arg():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=1234, help='random seed', type=int)
parser.add_argument('--h_dim_p', default=100, help='number of hidden nodes -- predictor', type=int)
parser.add_argument('--num_layers_p', default=2, help='number of layers -- predictor', type=int)
parser.add_argument('--h_dim_e', default=100, help='number of hidden nodes -- encoder', type=int)
parser.add_argument('--num_layers_e', default=3, help='number of layers -- encoder', type=int)
parser.add_argument('--z_dim', default=50, help='dimension of latent representations', type=int)
parser.add_argument("--lr_rate", default=1e-4, help='learning rate', type=float)
parser.add_argument("--l1_reg", default=0., help='l1-regularization', type=float)
parser.add_argument("--itrs", default=50000, type=int)
parser.add_argument("--step_size", default=1000, type=int)
parser.add_argument("--max_flag", default=20, type=int)
parser.add_argument("--mb_size", default=32, type=int)
parser.add_argument("--keep_prob", help='keep probability for dropout', default=0.7, type=float)
parser.add_argument('--alpha', default=1.0, help='coefficient -- alpha', type=float)
parser.add_argument('--beta', default=0.01, help='coefficient -- beta', type=float)
parser.add_argument('--save_path', default='./storage/', help='path to save files', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = init_arg()
seed = args.seed
### import multi-view dataset with arbitrary view-missing patterns.
X_set, Y_onehot, Mask = impt.import_incomplete_handwritten()
tr_X_set, te_X_set, va_X_set = {}, {}, {}
# 64/16/20 training/validation/testing split
for m in range(len(X_set)):
tr_X_set[m],te_X_set[m] = train_test_split(X_set[m], test_size=0.2, random_state=seed)
tr_X_set[m],va_X_set[m] = train_test_split(tr_X_set[m], test_size=0.2, random_state=seed)
tr_Y_onehot,te_Y_onehot, tr_M,te_M = train_test_split(Y_onehot, Mask, test_size=0.2, random_state=seed)
tr_Y_onehot,va_Y_onehot, tr_M,va_M = train_test_split(tr_Y_onehot, tr_M, test_size=0.2, random_state=seed)
x_dim_set = [tr_X_set[m].shape[1] for m in range(len(tr_X_set))]
y_dim = np.shape(tr_Y_onehot)[1]
if y_dim == 1:
y_type = 'continuous'
elif y_dim == 2:
y_type = 'binary'
else:
y_type = 'categorical'
mb_size = args.mb_size
steps_per_batch = int(np.shape(tr_M)[0]/mb_size) #for moving average
input_dims = {
'x_dim_set': x_dim_set,
'y_dim': y_dim,
'y_type': y_type,
'z_dim': args.z_dim,
'steps_per_batch': steps_per_batch
}
network_settings = {
'h_dim_p1': args.h_dim_p,
'num_layers_p1': args.num_layers_p, #view-specific
'h_dim_p2': args.h_dim_p,
'num_layers_p2': args.num_layers_p, #multi-view
'h_dim_e': args.h_dim_e,
'num_layers_e': args.num_layers_e,
'fc_activate_fn': tf.nn.relu,
'reg_scale': args.l1_reg,
}
lr_rate = args.lr_rate
iteration = args.itrs
stepsize = args.step_size
max_flag = args.max_flag
k_prob = args.keep_prob
alpha = args.alpha
beta = args.beta
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
tf.reset_default_graph()
gpu_options = tf.GPUOptions()
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
model = DeepIMV_AISTATS(sess, "DeepIMV_AISTATS", input_dims, network_settings)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
##### TRAINING
min_loss = 1e+8
max_acc = 0.0
tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
stop_flag = 0
for itr in range(iteration):
x_mb_set, y_mb, m_mb = f_get_minibatch_set(mb_size, tr_X_set, tr_Y_onehot, tr_M)
_, Lt, Lp, Lkl, Lps, Lkls, Lc = model.train(x_mb_set, y_mb, m_mb, alpha, beta, lr_rate, k_prob)
tr_avg_Lt += Lt/stepsize
tr_avg_Lp += Lp/stepsize
tr_avg_Lkl += Lkl/stepsize
tr_avg_Lps += Lps/stepsize
tr_avg_Lkls += Lkls/stepsize
tr_avg_Lc += Lc/stepsize
x_mb_set, y_mb, m_mb = f_get_minibatch_set(min(np.shape(va_M)[0], mb_size), va_X_set, va_Y_onehot, va_M)
Lt, Lp, Lkl, Lps, Lkls, Lc, _, _ = model.get_loss(x_mb_set, y_mb, m_mb, alpha, beta)
va_avg_Lt += Lt/stepsize
va_avg_Lp += Lp/stepsize
va_avg_Lkl += Lkl/stepsize
va_avg_Lps += Lps/stepsize
va_avg_Lkls += Lkls/stepsize
va_avg_Lc += Lc/stepsize
if (itr+1)%stepsize == 0:
y_pred, y_preds = model.predict_ys(va_X_set, va_M)
# score =
print( "{:05d}: TRAIN| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} | VALID| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} score={}".format(
itr+1, tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc,
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc, evaluate(va_Y_onehot, np.mean(y_preds, axis=0), y_type))
)
if min_loss > va_avg_Lt:
min_loss = va_avg_Lt
stop_flag = 0
saver.save(sess, save_path + 'best_model')
print('saved...')
else:
stop_flag += 1
tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
if stop_flag >= max_flag:
break
print('FINISHED...')
##### TESTING
saver.restore(sess, save_path + 'best_model')
_, pred_ys = model.predict_ys(te_X_set, te_M)
pred_y = np.mean(pred_ys, axis=0)
print('Test Score: {}'.format(evaluate(te_Y_onehot, pred_y, y_type)))