|
a |
|
b/reproduce_table3.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Tutorial - TCGA\n", |
|
|
8 |
"\n", |
|
|
9 |
"### Generating Results in Table 3 (TCGA Dataset)" |
|
|
10 |
] |
|
|
11 |
}, |
|
|
12 |
{ |
|
|
13 |
"cell_type": "code", |
|
|
14 |
"execution_count": 1, |
|
|
15 |
"metadata": { |
|
|
16 |
"tags": [] |
|
|
17 |
}, |
|
|
18 |
"outputs": [], |
|
|
19 |
"source": [ |
|
|
20 |
"import warnings\n", |
|
|
21 |
"warnings.filterwarnings('ignore')\n", |
|
|
22 |
"\n", |
|
|
23 |
"import numpy as np\n", |
|
|
24 |
"import tensorflow as tf\n", |
|
|
25 |
"\n", |
|
|
26 |
"import random\n", |
|
|
27 |
"import sys, os" |
|
|
28 |
] |
|
|
29 |
}, |
|
|
30 |
{ |
|
|
31 |
"cell_type": "code", |
|
|
32 |
"execution_count": 2, |
|
|
33 |
"metadata": {}, |
|
|
34 |
"outputs": [], |
|
|
35 |
"source": [ |
|
|
36 |
"from sklearn.model_selection import train_test_split" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "code", |
|
|
41 |
"execution_count": 3, |
|
|
42 |
"metadata": {}, |
|
|
43 |
"outputs": [], |
|
|
44 |
"source": [ |
|
|
45 |
"import import_data as impt\n", |
|
|
46 |
"from helper import f_get_minibatch_set, evaluate\n", |
|
|
47 |
"from class_DeepIMV_AISTATS import DeepIMV_AISTATS" |
|
|
48 |
] |
|
|
49 |
}, |
|
|
50 |
{ |
|
|
51 |
"cell_type": "code", |
|
|
52 |
"execution_count": 4, |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [], |
|
|
55 |
"source": [ |
|
|
56 |
"year = 1\n", |
|
|
57 |
"DATASET_PATH = 'TCGA_{}YR'.format(int(year))\n", |
|
|
58 |
"DATASET = 'TCGA'\n", |
|
|
59 |
"\n", |
|
|
60 |
"X_set_comp, Y_onehot_comp, Mask_comp, X_set_incomp, Y_onehot_incomp, Mask_incomp = impt.import_dataset_TCGA(year)\n", |
|
|
61 |
"\n", |
|
|
62 |
"MODE = 'incomplete'\n", |
|
|
63 |
"model_name = 'DeepIMV_AISTATS'\n", |
|
|
64 |
"\n", |
|
|
65 |
"M = len(X_set_comp)" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 5, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"SEED = 1234\n", |
|
|
75 |
"OUTITERATION = 5\n", |
|
|
76 |
"\n", |
|
|
77 |
"RESULTS_AUROC_RAND = np.zeros([4, OUTITERATION+2])\n", |
|
|
78 |
"RESULTS_AUPRC_RAND = np.zeros([4, OUTITERATION+2])" |
|
|
79 |
] |
|
|
80 |
}, |
|
|
81 |
{ |
|
|
82 |
"cell_type": "code", |
|
|
83 |
"execution_count": 6, |
|
|
84 |
"metadata": {}, |
|
|
85 |
"outputs": [], |
|
|
86 |
"source": [ |
|
|
87 |
"out_itr = 1\n", |
|
|
88 |
"\n", |
|
|
89 |
"tr_X_set, te_X_set, va_X_set = {}, {}, {}\n", |
|
|
90 |
"for m in range(M):\n", |
|
|
91 |
" tr_X_set[m],te_X_set[m] = train_test_split(X_set_comp[m], test_size=0.2, random_state=SEED + out_itr)\n", |
|
|
92 |
" tr_X_set[m],va_X_set[m] = train_test_split(tr_X_set[m], test_size=0.2, random_state=SEED + out_itr)\n", |
|
|
93 |
" \n", |
|
|
94 |
"tr_Y_onehot,te_Y_onehot, tr_M,te_M = train_test_split(Y_onehot_comp, Mask_comp, test_size=0.2, random_state=SEED + out_itr)\n", |
|
|
95 |
"tr_Y_onehot,va_Y_onehot, tr_M,va_M = train_test_split(tr_Y_onehot, tr_M, test_size=0.2, random_state=SEED + out_itr)" |
|
|
96 |
] |
|
|
97 |
}, |
|
|
98 |
{ |
|
|
99 |
"cell_type": "code", |
|
|
100 |
"execution_count": 7, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"outputs": [ |
|
|
103 |
{ |
|
|
104 |
"name": "stdout", |
|
|
105 |
"output_type": "stream", |
|
|
106 |
"text": [ |
|
|
107 |
"(5850, 4)\n" |
|
|
108 |
] |
|
|
109 |
} |
|
|
110 |
], |
|
|
111 |
"source": [ |
|
|
112 |
"if MODE == 'incomplete':\n", |
|
|
113 |
" for m in range(M):\n", |
|
|
114 |
" tr_X_set[m] = np.concatenate([tr_X_set[m], X_set_incomp[m]], axis=0)\n", |
|
|
115 |
"\n", |
|
|
116 |
" tr_Y_onehot = np.concatenate([tr_Y_onehot, Y_onehot_incomp], axis=0)\n", |
|
|
117 |
" tr_M = np.concatenate([tr_M, Mask_incomp], axis=0)\n", |
|
|
118 |
" \n", |
|
|
119 |
" print(tr_M.shape)\n", |
|
|
120 |
"elif MODE == 'complete':\n", |
|
|
121 |
" print(tr_M.shape)\n", |
|
|
122 |
"else:\n", |
|
|
123 |
" raise ValueError('WRONG MODE!!!')\n", |
|
|
124 |
" \n", |
|
|
125 |
"\n", |
|
|
126 |
"save_path = '{}/M{}_{}/{}/'.format(DATASET_PATH, M, MODE, model_name)\n", |
|
|
127 |
" \n", |
|
|
128 |
" \n", |
|
|
129 |
"if not os.path.exists(save_path + 'itr{}/'.format(out_itr)):\n", |
|
|
130 |
" os.makedirs(save_path + 'itr{}/'.format(out_itr))" |
|
|
131 |
] |
|
|
132 |
}, |
|
|
133 |
{ |
|
|
134 |
"cell_type": "markdown", |
|
|
135 |
"metadata": {}, |
|
|
136 |
"source": [ |
|
|
137 |
"### Hyper-parameters" |
|
|
138 |
] |
|
|
139 |
}, |
|
|
140 |
{ |
|
|
141 |
"cell_type": "code", |
|
|
142 |
"execution_count": 16, |
|
|
143 |
"metadata": {}, |
|
|
144 |
"outputs": [], |
|
|
145 |
"source": [ |
|
|
146 |
"### training coefficients\n", |
|
|
147 |
"alpha = 1.0\n", |
|
|
148 |
"beta = 0.01 # IB coefficient\n", |
|
|
149 |
"lr_rate = 1e-4\n", |
|
|
150 |
"k_prob = 0.7\n", |
|
|
151 |
"\n", |
|
|
152 |
"\n", |
|
|
153 |
"### network parameters\n", |
|
|
154 |
"mb_size = 32 \n", |
|
|
155 |
"steps_per_batch = int(np.shape(tr_M)[0]/mb_size)\n", |
|
|
156 |
"steps_per_batch = 500\n", |
|
|
157 |
"\n", |
|
|
158 |
"x_dim_set = [tr_X_set[m].shape[1] for m in range(len(tr_X_set))]\n", |
|
|
159 |
"y_dim = np.shape(tr_Y_onehot)[1]\n", |
|
|
160 |
"y_type = 'binary'\n", |
|
|
161 |
"z_dim = 100\n", |
|
|
162 |
"\n", |
|
|
163 |
"h_dim_p = 100\n", |
|
|
164 |
"num_layers_p = 2\n", |
|
|
165 |
"\n", |
|
|
166 |
"h_dim_e = 300\n", |
|
|
167 |
"num_layers_e = 3\n", |
|
|
168 |
"\n", |
|
|
169 |
"input_dims = {\n", |
|
|
170 |
" 'x_dim_set': x_dim_set,\n", |
|
|
171 |
" 'y_dim': y_dim,\n", |
|
|
172 |
" 'y_type': y_type,\n", |
|
|
173 |
" 'z_dim': z_dim,\n", |
|
|
174 |
" \n", |
|
|
175 |
" 'steps_per_batch': steps_per_batch\n", |
|
|
176 |
"}\n", |
|
|
177 |
"\n", |
|
|
178 |
"network_settings = {\n", |
|
|
179 |
" 'h_dim_p1': h_dim_p,\n", |
|
|
180 |
" 'num_layers_p1': num_layers_p, #view-specific\n", |
|
|
181 |
" 'h_dim_p2': h_dim_p,\n", |
|
|
182 |
" 'num_layers_p2': num_layers_p, #multi-view\n", |
|
|
183 |
" 'h_dim_e': h_dim_e,\n", |
|
|
184 |
" 'num_layers_e': num_layers_e,\n", |
|
|
185 |
" 'fc_activate_fn': tf.nn.relu,\n", |
|
|
186 |
" 'reg_scale': 0., #1e-4,\n", |
|
|
187 |
"}\n" |
|
|
188 |
] |
|
|
189 |
}, |
|
|
190 |
{ |
|
|
191 |
"cell_type": "markdown", |
|
|
192 |
"metadata": {}, |
|
|
193 |
"source": [ |
|
|
194 |
"### Training" |
|
|
195 |
] |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"cell_type": "code", |
|
|
199 |
"execution_count": 17, |
|
|
200 |
"metadata": {}, |
|
|
201 |
"outputs": [], |
|
|
202 |
"source": [ |
|
|
203 |
"tf.reset_default_graph()\n", |
|
|
204 |
"\n", |
|
|
205 |
"# gpu_options = tf.GPUOptions()\n", |
|
|
206 |
"gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.22)\n", |
|
|
207 |
"sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))\n", |
|
|
208 |
"\n", |
|
|
209 |
"model = DeepIMV_AISTATS(sess, \"DeepIMV_AISTATS\", input_dims, network_settings)\n", |
|
|
210 |
"\n", |
|
|
211 |
"saver = tf.train.Saver()\n", |
|
|
212 |
"sess.run(tf.global_variables_initializer())" |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"execution_count": 18, |
|
|
218 |
"metadata": {}, |
|
|
219 |
"outputs": [ |
|
|
220 |
{ |
|
|
221 |
"name": "stdout", |
|
|
222 |
"output_type": "stream", |
|
|
223 |
"text": [ |
|
|
224 |
"00500: TRAIN| Lt=6.454 Lp=0.994 Lkl=42.950 Lps=4.288 Lkls=74.204 Lc=49.079 | VALID| Lt=5.554 Lp=0.929 Lkl=45.010 Lps=3.849 Lkls=32.576 Lc=46.531 score=(0.5993706489643726, 0.20887111832184874)\n", |
|
|
225 |
"saved...\n", |
|
|
226 |
"01000: TRAIN| Lt=5.237 Lp=0.856 Lkl=39.923 Lps=3.558 Lkls=42.400 Lc=43.212 | VALID| Lt=4.698 Lp=0.793 Lkl=43.676 Lps=3.274 Lkls=19.390 Lc=43.746 score=(0.7675711791710671, 0.2945589414475165)\n", |
|
|
227 |
"saved...\n", |
|
|
228 |
"01500: TRAIN| Lt=4.808 Lp=0.744 Lkl=38.987 Lps=3.332 Lkls=34.243 Lc=41.684 | VALID| Lt=4.419 Lp=0.717 Lkl=42.991 Lps=3.106 Lkls=16.574 Lc=43.175 score=(0.7953315947151756, 0.32247570838825707)\n", |
|
|
229 |
"saved...\n", |
|
|
230 |
"02000: TRAIN| Lt=4.523 Lp=0.687 Lkl=38.207 Lps=3.151 Lkls=30.336 Lc=40.726 | VALID| Lt=4.272 Lp=0.679 Lkl=42.528 Lps=3.014 Lkls=15.384 Lc=42.915 score=(0.7921632864193805, 0.36678881900359384)\n", |
|
|
231 |
"saved...\n", |
|
|
232 |
"02500: TRAIN| Lt=4.286 Lp=0.633 Lkl=37.788 Lps=2.994 Lkls=28.058 Lc=40.309 | VALID| Lt=4.211 Lp=0.677 Lkl=42.190 Lps=2.970 Lkls=14.196 Lc=42.683 score=(0.7951160635385909, 0.36298993132414803)\n", |
|
|
233 |
"saved...\n", |
|
|
234 |
"03000: TRAIN| Lt=4.229 Lp=0.621 Lkl=37.510 Lps=2.975 Lkls=25.871 Lc=39.875 | VALID| Lt=4.188 Lp=0.676 Lkl=41.952 Lps=2.961 Lkls=13.201 Lc=42.500 score=(0.8097075241933746, 0.41376471395985764)\n", |
|
|
235 |
"saved...\n", |
|
|
236 |
"03500: TRAIN| Lt=4.001 Lp=0.570 Lkl=37.365 Lps=2.802 Lkls=25.548 Lc=39.800 | VALID| Lt=4.182 Lp=0.675 Lkl=41.812 Lps=2.959 Lkls=12.999 Lc=42.445 score=(0.7994482401879431, 0.38641092091905127)\n", |
|
|
237 |
"saved...\n", |
|
|
238 |
"04000: TRAIN| Lt=3.809 Lp=0.524 Lkl=37.191 Lps=2.659 Lkls=25.413 Lc=39.659 | VALID| Lt=4.171 Lp=0.673 Lkl=41.692 Lps=2.951 Lkls=12.952 Lc=42.425 score=(0.8013664676595469, 0.40857793712669693)\n", |
|
|
239 |
"saved...\n", |
|
|
240 |
"04500: TRAIN| Lt=3.721 Lp=0.500 Lkl=37.069 Lps=2.603 Lkls=24.795 Lc=39.503 | VALID| Lt=4.199 Lp=0.691 Lkl=41.590 Lps=2.970 Lkls=12.149 Lc=42.290 score=(0.8095350992521069, 0.3908763759078532)\n", |
|
|
241 |
"05000: TRAIN| Lt=3.584 Lp=0.468 Lkl=36.996 Lps=2.499 Lkls=24.732 Lc=39.387 | VALID| Lt=4.222 Lp=0.683 Lkl=41.568 Lps=3.004 Lkls=11.931 Lc=42.247 score=(0.8059680582796301, 0.3793825246248715)\n", |
|
|
242 |
"05500: TRAIN| Lt=3.491 Lp=0.415 Lkl=37.158 Lps=2.448 Lkls=25.743 Lc=39.493 | VALID| Lt=4.229 Lp=0.691 Lkl=41.672 Lps=2.999 Lkls=12.135 Lc=42.268 score=(0.8071858094273336, 0.3889992215812622)\n", |
|
|
243 |
"06000: TRAIN| Lt=3.203 Lp=0.369 Lkl=37.194 Lps=2.200 Lkls=26.217 Lc=39.626 | VALID| Lt=4.317 Lp=0.713 Lkl=41.652 Lps=3.064 Lkls=12.409 Lc=42.303 score=(0.8036295450136862, 0.37662407670056136)\n", |
|
|
244 |
"06500: TRAIN| Lt=3.164 Lp=0.335 Lkl=37.223 Lps=2.193 Lkls=26.342 Lc=39.580 | VALID| Lt=4.451 Lp=0.739 Lkl=41.631 Lps=3.180 Lkls=11.647 Lc=42.185 score=(0.8091255900165959, 0.3946424315886283)\n", |
|
|
245 |
"07000: TRAIN| Lt=2.999 Lp=0.304 Lkl=37.251 Lps=2.057 Lkls=26.575 Lc=39.603 | VALID| Lt=4.551 Lp=0.769 Lkl=41.639 Lps=3.248 Lkls=11.771 Lc=42.199 score=(0.8006552147768174, 0.370863714209815)\n", |
|
|
246 |
"07500: TRAIN| Lt=2.906 Lp=0.282 Lkl=37.167 Lps=1.988 Lkls=26.441 Lc=39.570 | VALID| Lt=4.596 Lp=0.778 Lkl=41.552 Lps=3.290 Lkls=11.228 Lc=42.119 score=(0.8097290773110329, 0.39510639377535883)\n", |
|
|
247 |
"08000: TRAIN| Lt=2.769 Lp=0.247 Lkl=37.136 Lps=1.886 Lkls=26.457 Lc=39.533 | VALID| Lt=4.599 Lp=0.801 Lkl=41.528 Lps=3.270 Lkls=11.238 Lc=42.125 score=(0.8128542793715111, 0.41143309089456515)\n", |
|
|
248 |
"08500: TRAIN| Lt=2.716 Lp=0.232 Lkl=37.163 Lps=1.841 Lkls=27.146 Lc=39.555 | VALID| Lt=4.615 Lp=0.807 Lkl=41.499 Lps=3.282 Lkls=11.072 Lc=42.104 score=(0.8085221027221589, 0.38547322403694323)\n", |
|
|
249 |
"09000: TRAIN| Lt=2.657 Lp=0.220 Lkl=37.092 Lps=1.803 Lkls=26.330 Lc=39.509 | VALID| Lt=4.735 Lp=0.817 Lkl=41.439 Lps=3.395 Lkls=10.821 Lc=42.076 score=(0.8157639502554044, 0.39705578680902437)\n", |
|
|
250 |
"09500: TRAIN| Lt=2.580 Lp=0.201 Lkl=37.165 Lps=1.741 Lkls=26.648 Lc=39.570 | VALID| Lt=4.852 Lp=0.872 Lkl=41.456 Lps=3.461 Lkls=10.475 Lc=42.012 score=(0.8036079918960277, 0.3835206157275273)\n", |
|
|
251 |
"10000: TRAIN| Lt=2.514 Lp=0.188 Lkl=37.163 Lps=1.687 Lkls=26.721 Lc=39.563 | VALID| Lt=4.793 Lp=0.864 Lkl=41.406 Lps=3.411 Lkls=10.398 Lc=42.004 score=(0.8004612367178912, 0.384517869168757)\n", |
|
|
252 |
"10500: TRAIN| Lt=2.440 Lp=0.169 Lkl=37.154 Lps=1.631 Lkls=26.868 Lc=39.589 | VALID| Lt=4.870 Lp=0.884 Lkl=41.363 Lps=3.468 Lkls=10.429 Lc=42.012 score=(0.7988663060111645, 0.3839728905168826)\n", |
|
|
253 |
"11000: TRAIN| Lt=2.398 Lp=0.161 Lkl=37.106 Lps=1.602 Lkls=26.449 Lc=39.480 | VALID| Lt=4.816 Lp=0.854 Lkl=41.332 Lps=3.449 Lkls=9.962 Lc=41.958 score=(0.7941677263616183, 0.3776828074521237)\n", |
|
|
254 |
"11500: TRAIN| Lt=2.306 Lp=0.141 Lkl=37.107 Lps=1.524 Lkls=27.002 Lc=39.504 | VALID| Lt=5.125 Lp=0.943 Lkl=41.346 Lps=3.669 Lkls=10.021 Lc=41.967 score=(0.8140612539603854, 0.3916890388476985)\n", |
|
|
255 |
"12000: TRAIN| Lt=2.222 Lp=0.129 Lkl=37.141 Lps=1.452 Lkls=26.963 Lc=39.599 | VALID| Lt=5.303 Lp=0.986 Lkl=41.324 Lps=3.803 Lkls=10.081 Lc=41.972 score=(0.795999741362588, 0.38850082170618294)\n", |
|
|
256 |
"12500: TRAIN| Lt=2.237 Lp=0.127 Lkl=37.083 Lps=1.468 Lkls=27.086 Lc=39.497 | VALID| Lt=5.258 Lp=0.980 Lkl=41.319 Lps=3.767 Lkls=9.768 Lc=41.938 score=(0.8033062482488093, 0.3854664963559042)\n", |
|
|
257 |
"13000: TRAIN| Lt=2.173 Lp=0.116 Lkl=37.029 Lps=1.416 Lkls=27.096 Lc=39.430 | VALID| Lt=5.308 Lp=1.004 Lkl=41.298 Lps=3.793 Lkls=9.795 Lc=41.938 score=(0.7964954630687329, 0.37666072443224835)\n", |
|
|
258 |
"13500: TRAIN| Lt=2.111 Lp=0.113 Lkl=36.941 Lps=1.363 Lkls=26.571 Lc=39.395 | VALID| Lt=5.416 Lp=1.027 Lkl=41.269 Lps=3.882 Lkls=9.464 Lc=41.890 score=(0.8053969006616808, 0.38825824120686886)\n", |
|
|
259 |
"14000: TRAIN| Lt=2.074 Lp=0.105 Lkl=37.012 Lps=1.334 Lkls=26.482 Lc=39.457 | VALID| Lt=5.368 Lp=1.013 Lkl=41.223 Lps=3.849 Lkls=9.415 Lc=41.889 score=(0.7898139965946074, 0.3696094392582078)\n", |
|
|
260 |
"FINISHED...\n" |
|
|
261 |
] |
|
|
262 |
} |
|
|
263 |
], |
|
|
264 |
"source": [ |
|
|
265 |
"saver = tf.train.Saver()\n", |
|
|
266 |
"sess.run(tf.global_variables_initializer())\n", |
|
|
267 |
"\n", |
|
|
268 |
"ITERATION = 500000\n", |
|
|
269 |
"STEPSIZE = 500\n", |
|
|
270 |
"\n", |
|
|
271 |
"min_loss = 1e+8 \n", |
|
|
272 |
"max_acc = 0.0\n", |
|
|
273 |
"max_flag = 20\n", |
|
|
274 |
"\n", |
|
|
275 |
"tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0\n", |
|
|
276 |
"va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0\n", |
|
|
277 |
" \n", |
|
|
278 |
"stop_flag = 0\n", |
|
|
279 |
"for itr in range(ITERATION):\n", |
|
|
280 |
" x_mb_set, y_mb, m_mb = f_get_minibatch_set(mb_size, tr_X_set, tr_Y_onehot, tr_M) \n", |
|
|
281 |
" \n", |
|
|
282 |
" _, Lt, Lp, Lkl, Lps, Lkls, Lc = model.train(x_mb_set, y_mb, m_mb, alpha, beta, lr_rate, k_prob)\n", |
|
|
283 |
"\n", |
|
|
284 |
" tr_avg_Lt += Lt/STEPSIZE\n", |
|
|
285 |
" tr_avg_Lp += Lp/STEPSIZE\n", |
|
|
286 |
" tr_avg_Lkl += Lkl/STEPSIZE\n", |
|
|
287 |
" tr_avg_Lps += Lps/STEPSIZE\n", |
|
|
288 |
" tr_avg_Lkls += Lkls/STEPSIZE\n", |
|
|
289 |
" tr_avg_Lc += Lc/STEPSIZE\n", |
|
|
290 |
"\n", |
|
|
291 |
" \n", |
|
|
292 |
" x_mb_set, y_mb, m_mb = f_get_minibatch_set(min(np.shape(va_M)[0], mb_size), va_X_set, va_Y_onehot, va_M) \n", |
|
|
293 |
" Lt, Lp, Lkl, Lps, Lkls, Lc, _, _ = model.get_loss(x_mb_set, y_mb, m_mb, alpha, beta)\n", |
|
|
294 |
" \n", |
|
|
295 |
" va_avg_Lt += Lt/STEPSIZE\n", |
|
|
296 |
" va_avg_Lp += Lp/STEPSIZE\n", |
|
|
297 |
" va_avg_Lkl += Lkl/STEPSIZE\n", |
|
|
298 |
" va_avg_Lps += Lps/STEPSIZE\n", |
|
|
299 |
" va_avg_Lkls += Lkls/STEPSIZE\n", |
|
|
300 |
" va_avg_Lc += Lc/STEPSIZE\n", |
|
|
301 |
" \n", |
|
|
302 |
" if (itr+1)%STEPSIZE == 0:\n", |
|
|
303 |
" y_pred, y_preds = model.predict_ys(va_X_set, va_M)\n", |
|
|
304 |
" \n", |
|
|
305 |
"# score = \n", |
|
|
306 |
"\n", |
|
|
307 |
" print( \"{:05d}: TRAIN| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} | VALID| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} score={}\".format(\n", |
|
|
308 |
" itr+1, tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc, \n", |
|
|
309 |
" va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc, evaluate(va_Y_onehot, np.mean(y_preds, axis=0), y_type))\n", |
|
|
310 |
" )\n", |
|
|
311 |
" \n", |
|
|
312 |
" if min_loss > va_avg_Lt:\n", |
|
|
313 |
" min_loss = va_avg_Lt\n", |
|
|
314 |
" stop_flag = 0\n", |
|
|
315 |
" saver.save(sess,save_path + 'itr{}/best_model'.format(out_itr))\n", |
|
|
316 |
" print('saved...')\n", |
|
|
317 |
" else:\n", |
|
|
318 |
" stop_flag += 1\n", |
|
|
319 |
" \n", |
|
|
320 |
" tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0\n", |
|
|
321 |
" va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0\n", |
|
|
322 |
" \n", |
|
|
323 |
" if stop_flag >= max_flag:\n", |
|
|
324 |
" break\n", |
|
|
325 |
" \n", |
|
|
326 |
"print('FINISHED...')" |
|
|
327 |
] |
|
|
328 |
}, |
|
|
329 |
{ |
|
|
330 |
"cell_type": "code", |
|
|
331 |
"execution_count": 19, |
|
|
332 |
"metadata": {}, |
|
|
333 |
"outputs": [ |
|
|
334 |
{ |
|
|
335 |
"name": "stdout", |
|
|
336 |
"output_type": "stream", |
|
|
337 |
"text": [ |
|
|
338 |
"INFO:tensorflow:Restoring parameters from TCGA_1YR/M4_incomplete/DeepIMV_AISTATS/itr1/best_model\n" |
|
|
339 |
] |
|
|
340 |
} |
|
|
341 |
], |
|
|
342 |
"source": [ |
|
|
343 |
"saver.restore(sess, save_path + 'itr{}/best_model'.format(out_itr))" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "markdown", |
|
|
348 |
"metadata": {}, |
|
|
349 |
"source": [ |
|
|
350 |
"### Evaluation -- (Results in Table 3)" |
|
|
351 |
] |
|
|
352 |
}, |
|
|
353 |
{ |
|
|
354 |
"cell_type": "code", |
|
|
355 |
"execution_count": 20, |
|
|
356 |
"metadata": {}, |
|
|
357 |
"outputs": [ |
|
|
358 |
{ |
|
|
359 |
"name": "stdout", |
|
|
360 |
"output_type": "stream", |
|
|
361 |
"text": [ |
|
|
362 |
"TEST - INCOMPLETE: auroc=0.7433 auprc=0.3541\n", |
|
|
363 |
"TEST - INCOMPLETE: auroc=0.7747 auprc=0.4077\n", |
|
|
364 |
"TEST - INCOMPLETE: auroc=0.7955 auprc=0.4004\n", |
|
|
365 |
"TEST - INCOMPLETE: auroc=0.8011 auprc=0.4138\n" |
|
|
366 |
] |
|
|
367 |
} |
|
|
368 |
], |
|
|
369 |
"source": [ |
|
|
370 |
"for m_available in [1,2,3,4]:\n", |
|
|
371 |
"\n", |
|
|
372 |
" tmp_M_mis = np.zeros_like(te_M)#np.copy(te_M)\n", |
|
|
373 |
"\n", |
|
|
374 |
"\n", |
|
|
375 |
" for i in range(len(tmp_M_mis)):\n", |
|
|
376 |
" np.random.seed(SEED+out_itr+i)\n", |
|
|
377 |
" idx = np.random.choice(4, m_available, replace=False)\n", |
|
|
378 |
" tmp_M_mis[i, idx] = 1\n", |
|
|
379 |
"\n", |
|
|
380 |
"\n", |
|
|
381 |
" #for stablity of reducing randomness..\n", |
|
|
382 |
" for i in range(100):\n", |
|
|
383 |
" _, tmp_preds_all = model.predict_ys(te_X_set, tmp_M_mis)\n", |
|
|
384 |
" if i == 0:\n", |
|
|
385 |
" y_preds_all = tmp_preds_all\n", |
|
|
386 |
" else:\n", |
|
|
387 |
" y_preds_all = np.concatenate([y_preds_all, tmp_preds_all], axis=0)\n", |
|
|
388 |
"\n", |
|
|
389 |
" auc1, apc1 = evaluate(te_Y_onehot, y_preds_all.mean(axis=0), y_type)\n", |
|
|
390 |
"\n", |
|
|
391 |
" RESULTS_AUROC_RAND[m_available-1, out_itr] = auc1\n", |
|
|
392 |
" RESULTS_AUPRC_RAND[m_available-1, out_itr] = apc1\n", |
|
|
393 |
"\n", |
|
|
394 |
" print(\"TEST - {} - #VIEW {}: auroc={:.4f} auprc={:.4f}\".format(MODE.upper(), m_available, auc1, apc1))" |
|
|
395 |
] |
|
|
396 |
} |
|
|
397 |
], |
|
|
398 |
"metadata": { |
|
|
399 |
"kernelspec": { |
|
|
400 |
"display_name": "Python 3", |
|
|
401 |
"language": "python", |
|
|
402 |
"name": "python3" |
|
|
403 |
}, |
|
|
404 |
"language_info": { |
|
|
405 |
"codemirror_mode": { |
|
|
406 |
"name": "ipython", |
|
|
407 |
"version": 3 |
|
|
408 |
}, |
|
|
409 |
"file_extension": ".py", |
|
|
410 |
"mimetype": "text/x-python", |
|
|
411 |
"name": "python", |
|
|
412 |
"nbconvert_exporter": "python", |
|
|
413 |
"pygments_lexer": "ipython3", |
|
|
414 |
"version": "3.7.9" |
|
|
415 |
} |
|
|
416 |
}, |
|
|
417 |
"nbformat": 4, |
|
|
418 |
"nbformat_minor": 4 |
|
|
419 |
} |