Diff of /main.py [000000] .. [0f2bcf]

Switch to side-by-side view

--- a
+++ b/main.py
@@ -0,0 +1,195 @@
+import warnings
+warnings.filterwarnings('ignore')
+
+import numpy as np
+import tensorflow as tf
+
+import random
+import sys, os
+
+from sklearn.model_selection import train_test_split
+
+import import_data as impt
+from helper import f_get_minibatch_set, evaluate
+from class_DeepIMV_AISTATS import DeepIMV_AISTATS
+
+
+import argparse
+
+def init_arg():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--seed', default=1234, help='random seed', type=int)
+    
+    parser.add_argument('--h_dim_p', default=100, help='number of hidden nodes -- predictor', type=int)
+    parser.add_argument('--num_layers_p', default=2, help='number of layers -- predictor', type=int)
+
+    parser.add_argument('--h_dim_e', default=100, help='number of hidden nodes -- encoder', type=int)
+    parser.add_argument('--num_layers_e', default=3, help='number of layers -- encoder', type=int)
+    
+    parser.add_argument('--z_dim', default=50, help='dimension of latent representations', type=int)
+
+    
+    parser.add_argument("--lr_rate", default=1e-4, help='learning rate', type=float)
+    parser.add_argument("--l1_reg", default=0., help='l1-regularization', type=float)
+
+    parser.add_argument("--itrs", default=50000, type=int)
+    parser.add_argument("--step_size", default=1000, type=int)
+    parser.add_argument("--max_flag", default=20, type=int)
+
+    parser.add_argument("--mb_size", default=32, type=int)
+    parser.add_argument("--keep_prob", help='keep probability for dropout', default=0.7, type=float)
+    
+    parser.add_argument('--alpha', default=1.0, help='coefficient -- alpha', type=float)
+    parser.add_argument('--beta', default=0.01, help='coefficient -- beta', type=float)
+    
+    parser.add_argument('--save_path', default='./storage/', help='path to save files', type=str)
+
+    return parser.parse_args()
+
+
+if __name__ == '__main__':
+    
+    args             = init_arg()    
+    seed             = args.seed
+    ### import multi-view dataset with arbitrary view-missing patterns.
+    X_set, Y_onehot, Mask = impt.import_incomplete_handwritten()
+    
+    tr_X_set, te_X_set, va_X_set = {}, {}, {}
+
+    # 64/16/20 training/validation/testing split
+    for m in range(len(X_set)):
+        tr_X_set[m],te_X_set[m] = train_test_split(X_set[m], test_size=0.2, random_state=seed)   
+        tr_X_set[m],va_X_set[m] = train_test_split(tr_X_set[m], test_size=0.2, random_state=seed)
+
+    tr_Y_onehot,te_Y_onehot, tr_M,te_M = train_test_split(Y_onehot, Mask, test_size=0.2, random_state=seed)
+    tr_Y_onehot,va_Y_onehot, tr_M,va_M = train_test_split(tr_Y_onehot, tr_M, test_size=0.2, random_state=seed)
+
+    x_dim_set    = [tr_X_set[m].shape[1] for m in range(len(tr_X_set))]
+    y_dim        = np.shape(tr_Y_onehot)[1]
+
+    if y_dim == 1:
+        y_type       = 'continuous'
+    elif y_dim == 2:
+        y_type       = 'binary'
+    else:
+        y_type       = 'categorical'
+    
+    
+    mb_size         = args.mb_size
+    steps_per_batch = int(np.shape(tr_M)[0]/mb_size) #for moving average
+    
+    input_dims = {
+        'x_dim_set': x_dim_set,
+        'y_dim': y_dim,
+        'y_type': y_type,
+        'z_dim': args.z_dim,
+
+        'steps_per_batch': steps_per_batch
+    }
+
+    network_settings = {
+        'h_dim_p1': args.h_dim_p,
+        'num_layers_p1': args.num_layers_p,   #view-specific
+
+        'h_dim_p2': args.h_dim_p,
+        'num_layers_p2': args.num_layers_p,  #multi-view
+
+        'h_dim_e': args.h_dim_e,
+        'num_layers_e': args.num_layers_e,
+
+        'fc_activate_fn': tf.nn.relu,
+        'reg_scale': args.l1_reg,
+    }
+    
+
+    lr_rate         = args.lr_rate
+    iteration       = args.itrs
+    stepsize        = args.step_size
+    max_flag        = args.max_flag
+
+    k_prob          = args.keep_prob
+    
+    alpha           = args.alpha
+    beta            = args.beta
+    
+    save_path       = args.save_path
+    
+    if not os.path.exists(save_path):
+        os.makedirs(save_path)
+
+
+    tf.reset_default_graph()
+    gpu_options = tf.GPUOptions()
+    
+    sess  = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
+    model = DeepIMV_AISTATS(sess, "DeepIMV_AISTATS", input_dims, network_settings)
+    
+
+    saver = tf.train.Saver()
+    sess.run(tf.global_variables_initializer())
+
+    ##### TRAINING
+    min_loss  = 1e+8   
+    max_acc   = 0.0
+
+    tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
+    va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
+    
+    stop_flag = 0
+    for itr in range(iteration):
+        x_mb_set, y_mb, m_mb          = f_get_minibatch_set(mb_size, tr_X_set, tr_Y_onehot, tr_M)     
+
+        _, Lt, Lp, Lkl, Lps, Lkls, Lc = model.train(x_mb_set, y_mb, m_mb, alpha, beta, lr_rate, k_prob)
+
+        tr_avg_Lt   += Lt/stepsize
+        tr_avg_Lp   += Lp/stepsize
+        tr_avg_Lkl  += Lkl/stepsize
+        tr_avg_Lps  += Lps/stepsize
+        tr_avg_Lkls += Lkls/stepsize
+        tr_avg_Lc   += Lc/stepsize
+
+
+        x_mb_set, y_mb, m_mb          = f_get_minibatch_set(min(np.shape(va_M)[0], mb_size), va_X_set, va_Y_onehot, va_M)       
+        Lt, Lp, Lkl, Lps, Lkls, Lc, _, _    = model.get_loss(x_mb_set, y_mb, m_mb, alpha, beta)
+
+        va_avg_Lt   += Lt/stepsize
+        va_avg_Lp   += Lp/stepsize
+        va_avg_Lkl  += Lkl/stepsize
+        va_avg_Lps  += Lps/stepsize
+        va_avg_Lkls += Lkls/stepsize
+        va_avg_Lc   += Lc/stepsize
+
+        if (itr+1)%stepsize == 0:
+            y_pred, y_preds = model.predict_ys(va_X_set, va_M)
+
+    #         score = 
+
+            print( "{:05d}: TRAIN| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} | VALID| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} score={}".format(
+                itr+1, tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc,  
+                va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc, evaluate(va_Y_onehot, np.mean(y_preds, axis=0), y_type))
+                 )
+
+            if min_loss > va_avg_Lt:
+                min_loss  = va_avg_Lt
+                stop_flag = 0
+                saver.save(sess, save_path  + 'best_model')
+                print('saved...')
+            else:
+                stop_flag += 1
+
+            tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
+            va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
+
+            if stop_flag >= max_flag:
+                break
+
+    print('FINISHED...')
+    
+    
+    ##### TESTING
+    saver.restore(sess, save_path  + 'best_model')
+    
+    _, pred_ys = model.predict_ys(te_X_set, te_M)
+    pred_y = np.mean(pred_ys, axis=0)
+
+    print('Test Score: {}'.format(evaluate(te_Y_onehot, pred_y, y_type)))
\ No newline at end of file