[0b32b6]: / python-scripts / runToGetMOG.py

Download this file

184 lines (144 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
from sklearn.preprocessing import normalize
from keras.layers import Input, Dense,concatenate,Dropout,average
from keras.models import Model
from keras import backend as K
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score
import numpy as np
from sklearn.model_selection import StratifiedKFold
from keras.layers import Input, Dense,concatenate,Dropout,average
from keras.models import Model
import keras
from sklearn.metrics import classification_report
#cancer数据
if __name__ == '__main__':
# files = ['breast2']
files = ['gbm','breast2']
for f in files:
datapath='./data/cancer_d2d/{f}'.format(f=f)
omics1 = np.loadtxt('{}/after_log_exp.txt'.format(datapath),str)
omics1 = np.delete(omics1, 0, axis=1)
#omics1 = np.transpose(omics1)
omics1 = omics1.astype(np.float)
omics1 = normalize(omics1, axis=0, norm='max')
print(omics1.shape)
omics2 = np.loadtxt('{}/after_log_mirna.txt'.format(datapath),str)
omics2= np.delete(omics2, 0, axis=1)
#omics2 = np.transpose(omics2)
omics2 = omics2.astype(np.float)
omics2 = normalize(omics2, axis=0, norm='max')
print(omics2.shape)
omics3 = np.loadtxt('{}/after_methy.txt'.format(datapath),str)
omics3= np.delete(omics3,0,axis=1)
#omics3 = np.transpose(omics3)
omics3 = omics3.astype(np.float)
omics3 = normalize(omics3, axis=0, norm='max')
print(omics3.shape)
labels = np.loadtxt('{datapath}/after_labels.txt'.format(datapath=datapath), str)
labels = np.delete(labels, 0, axis=1)
labels = labels.astype(np.int)
labels = np.squeeze(labels,axis=1)
# datapath = 'data/BRCA'
# omics1 = np.loadtxt('{}/1_all.csv'.format(datapath),delimiter=',')
# #omics1 = np.transpose(omics1)
# omics1 = normalize(omics1, axis=0, norm='max')
# omics2 = np.loadtxt('{}/2_all.csv'.format(datapath),delimiter=',')
# #omics2 = np.transpose(omics2)
# omics2 = normalize(omics2, axis=0, norm='max')
# omics3 = np.loadtxt('{}/3_all.csv'.format(datapath),delimiter=',')
# #omics3 = np.transpose(omics3)
# omics3 = normalize(omics3, axis=0, norm='max')
# k折交叉验证
all_acc = []
all_f1_macro = []
all_f1_weighted = []
all_auc_macro = []
all_auc_weighted = []
#omics = np.loadtxt('./result/nmf/mf_em.txt')
omics = np.concatenate((omics1, omics2, omics3), axis=1)
# labels = np.loadtxt('./data/BRCA/labels_all.csv', delimiter=',')
# data=np.concatenate([])
kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
for train_ix, test_ix in kfold.split(omics1, labels):
omics_tobuild=[omics1,omics2,omics3]
train_X_1=omics1[train_ix]
train_X_2=omics2[train_ix]
train_X_3=omics3[train_ix]
test_X_1=omics1[test_ix]
test_X_2=omics2[test_ix]
test_X_3=omics3[test_ix]
train_y, test_y = labels[train_ix], labels[test_ix]
np.savetxt('{}/1_tr.csv'.format(datapath), train_X_1, delimiter=',')
np.savetxt('{}/2_tr.csv'.format(datapath), train_X_2, delimiter=',')
np.savetxt('{}/3_tr.csv'.format(datapath), train_X_3, delimiter=',')
np.savetxt('{}/1_te.csv'.format(datapath), test_X_1, delimiter=',')
np.savetxt('{}/2_te.csv'.format(datapath), test_X_2, delimiter=',')
np.savetxt('{}/3_te.csv'.format(datapath), test_X_3, delimiter=',')
np.savetxt('{}/labels_tr.csv'.format(datapath), train_y, delimiter=',')
np.savetxt('{}/labels_te.csv'.format(datapath), test_y, delimiter=',')
break
#simulations数据
# if __name__ == '__main__':
# datatypes=["equal","heterogeneous"]
# typenums=[5,10,15]
# for datatype in datatypes:
# for typenum in typenums:
# datapath='data/simulations/{}/{}'.format(datatype, typenum)
# labels = np.loadtxt('{}/c.txt'.format(datapath))
# omics1 = np.loadtxt('{}/o1.txt'.format(datapath))
# omics1 = np.transpose(omics1)
# omics1 = normalize(omics1, axis=0, norm='max')
# omics2 = np.loadtxt('{}/o2.txt'.format(datapath))
# omics2 = np.transpose(omics2)
# omics2 = normalize(omics2, axis=0, norm='max')
# omics3 = np.loadtxt('{}/o3.txt'.format(datapath))
# omics3 = np.transpose(omics3)
# omics3 = normalize(omics3, axis=0, norm='max')
# omics = np.concatenate((omics1, omics2, omics3), axis=1)
# kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
# for train_ix, test_ix in kfold.split(omics1, labels):
# omics_tobuild=[omics1,omics2,omics3]
# train_X_1=omics1[train_ix]
# train_X_2=omics2[train_ix]
# train_X_3=omics3[train_ix]
# test_X_1=omics1[test_ix]
# test_X_2=omics2[test_ix]
# test_X_3=omics3[test_ix]
# train_y, test_y = labels[train_ix], labels[test_ix]
# np.savetxt('{}/1_tr.csv'.format(datapath), train_X_1, delimiter=',')
# np.savetxt('{}/2_tr.csv'.format(datapath), train_X_2, delimiter=',')
# np.savetxt('{}/3_tr.csv'.format(datapath), train_X_3, delimiter=',')
# np.savetxt('{}/1_te.csv'.format(datapath), test_X_1, delimiter=',')
# np.savetxt('{}/2_te.csv'.format(datapath), test_X_2, delimiter=',')
# np.savetxt('{}/3_te.csv'.format(datapath), test_X_3, delimiter=',')
# np.savetxt('{}/labels_tr.csv'.format(datapath), train_y, delimiter=',')
# np.savetxt('{}/labels_te.csv'.format(datapath), test_y, delimiter=',')
# break
#single数据
if __name__ == '__main__':
datapath = 'data/single-cell/'
resultpath = 'result/single-cell/'
labels = np.loadtxt('{}/c.txt'.format(datapath))
# groundtruth = list(np.int_(groundtruth))
omics = np.loadtxt('{}/omics.txt'.format(datapath))
omics = np.transpose(omics)
omics1=omics[0:206]
omics2=omics[206:412]
omics1 = normalize(omics1, axis=0, norm='max')
omics2 = normalize(omics2, axis=0, norm='max')
omics = np.concatenate((omics1, omics2), axis=1)
kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
for train_ix, test_ix in kfold.split(omics1, labels):
omics_tobuild=[omics1,omics2]
train_X_1=omics1[train_ix]
train_X_2=omics2[train_ix]
test_X_1=omics1[test_ix]
test_X_2=omics2[test_ix]
train_y, test_y = labels[train_ix], labels[test_ix]
np.savetxt('{}/1_tr.csv'.format(datapath), train_X_1, delimiter=',')
np.savetxt('{}/2_tr.csv'.format(datapath), train_X_2, delimiter=',')
np.savetxt('{}/1_te.csv'.format(datapath), test_X_1, delimiter=',')
np.savetxt('{}/2_te.csv'.format(datapath), test_X_2, delimiter=',')
np.savetxt('{}/labels_tr.csv'.format(datapath), train_y, delimiter=',')
np.savetxt('{}/labels_te.csv'.format(datapath), test_y, delimiter=',')
break