from keras.layers import Input, Dense
from keras.models import Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import k_means
from sklearn.metrics import silhouette_score, davies_bouldin_score
from sklearn.preprocessing import normalize
import time
from sklearn import metrics
from myUtils import *
from DAEclass import DAE
import os
if __name__ == '__main__':
datapath = 'data/single-cell/'
resultpath = 'result/single-cell/'
# groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
# groundtruth = list(np.int_(groundtruth))
omics = np.loadtxt('{}/omics.txt'.format(datapath))
omics = np.transpose(omics)
omics1 = omics[0:206]
omics2 = omics[206:412]
omics1 = normalize(omics1, axis=0, norm='max')
omics2 = normalize(omics2, axis=0, norm='max')
omics = np.concatenate((omics1, omics2), axis=1)
data = omics
input_dim = data.shape[1]
encoding1_dim = 4096
encoding2_dim = 1024
middle_dim = 2
dims = [encoding1_dim, encoding2_dim, middle_dim]
# ae = AE(data, dims)
# ae.train()
# encoded_factors = ae.predict(data)
noise_factor = 0.1
dae = DAE(data, dims, noise_factor)
dae.autoencoder.summary()
dae.train()
encoded_factors = dae.predict(data)
if not os.path.exists("{}/DAE_FCTAE_EM.txt".format(resultpath)):
os.mknod("{}/DAE_FCTAE_EM.txt".format(resultpath))
np.savetxt("{}/DAE_FCTAE_EM.txt".format(resultpath), encoded_factors)