from keras.layers import Input, Dense
from keras.models import Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import k_means
from sklearn.metrics import silhouette_score, davies_bouldin_score
from sklearn.preprocessing import normalize
import time
from sklearn import metrics
from myUtils import *
from AEclass import AE
import os
if __name__ == '__main__':
datapath = 'data/single-cell/'
resultpath = 'result/single-cell/'
# groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
# groundtruth = list(np.int_(groundtruth))
omics = np.loadtxt('{}/omics.txt'.format(datapath))
omics = np.transpose(omics)
omics1=omics[0:206]
omics2=omics[206:412]
omics1 = normalize(omics1, axis=0, norm='max')
omics2 = normalize(omics2, axis=0, norm='max')
omics = np.concatenate((omics1, omics2), axis=1)
# omics1 = np.loadtxt('{}/ata.txt'.format(datapath))
# omics1 = np.transpose(omics1)
# omics1 = normalize(omics1, axis=0, norm='max')
#
# omics2 = np.loadtxt('{}/rna.txt'.format(datapath))
# omics2 = np.transpose(omics2)
# omics2 = normalize(omics2, axis=0, norm='max')
#
# omics = np.concatenate((omics1, omics2), axis=1)
print(omics1.shape)
print(omics2.shape)
# data = omics
# input_dim = data.shape[1]
# encoding1_dim = 4096
# encoding2_dim = 1024
# middle_dim = 2
# dims = [encoding1_dim, encoding2_dim, middle_dim]
# ae = AE(data, dims)
# ae.autoencoder.summary()
# ae.train()
# encoded_factors = ae.predict(data)
# if not os.path.exists("{}/AE_FCTAE_EM.txt".format(resultpath)):
# os.mknod("{}/AE_FCTAE_EM.txt".format(resultpath))
# np.savetxt("{}/AE_FCTAE_EM.txt".format(resultpath), encoded_factors)
#
# # if not os.path.exists("AE_FCTAE_Kmeans.txt"):
# # os.mknod("AE_FCTAE_Kmeans.txt")
# # fo = open("AE_FCTAE_Kmeans.txt", "a")
# clf = KMeans(n_clusters=typenum)
# t0 = time.time()
# clf.fit(encoded_factors) # 模型训练
# km_batch = time.time() - t0 # 使用kmeans训练数据消耗的时间
#
# print(datatype, typenum)
# print("K-Means算法模型训练消耗时间:%.4fs" % km_batch)
#
# # 效果评估
# score_funcs = [
# metrics.adjusted_rand_score, # ARI(调整兰德指数)
# metrics.v_measure_score, # 均一性与完整性的加权平均
# metrics.adjusted_mutual_info_score, # AMI(调整互信息)
# metrics.mutual_info_score, # 互信息
# ]
# centers = clf.cluster_centers_
# # print("centers:")
# # print(centers)
# print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
# labels = clf.labels_
# print("labels:")
# print(labels)
# labels = list(np.int_(labels))
# if not os.path.exists("{}/AE_FCTAE_CL.txt".format(resultpath)):
# os.mknod("{}/AE_FCTAE_CL.txt".format(resultpath))
# np.savetxt("{}/AE_FCTAE_CL.txt".format(resultpath), labels, fmt='%d')
# print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
# # 2. 迭代对每个评估函数进行评估操作
# for score_func in score_funcs:
# t0 = time.time()
# km_scores = score_func(groundtruth, labels)
# print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (score_func.__name__, km_scores, time.time() - t0))
# t0 = time.time()
# jaccard_score = jaccard_coefficient(groundtruth, labels)
# print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (
# jaccard_coefficient.__name__, jaccard_score, time.time() - t0))
# silhouetteScore = silhouette_score(encoded_factors, labels, metric='euclidean')
# davies_bouldinScore = davies_bouldin_score(encoded_factors, labels)
# print("silhouetteScore:", silhouetteScore)
# print("davies_bouldinScore:", davies_bouldinScore)
# print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")