--- a/README.md +++ b/README.md @@ -1,53 +1,53 @@ -# DL-mo -## A benchmark study of deep learning based multi-omics data fusion methods for cancer -*** - -We here compare the performances of 10 deep learning methods in three contexts: -1. Simulated datasets -2. Cancer datasets -3. Single-cell datasets - -We use `python` and `R` to code the programs. The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder . -*** -## 16 deep learning methods -* [lfAE](./python-scripts/runCancerAE2.py) -* [efAE](./python-scripts/runCancerAE.py) -* [lfDAE](./python-scripts/runCancerDAE2.py) -* [efDAE](./python-scripts/runCancerDAE.py) -* [lfVAE](./python-scripts/runCancerVAE2.py) -* [efVAE](./python-scripts/runCancerVAE.py) -* [lfSVAE](./python-scripts/runCancerSVAE2.py) -* [efSVAE](./python-scripts/runCancerSVAE.py) -* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py) -* [efmmdVAE](./python-scripts/runCancerMMDVAE.py) -* [lfNN](./python-scripts/runCancerDNN.py) -* [efNN](./python-scripts/runCancerDNN.py) -* [lfCNN](./python-scripts/runCancerCNN.py) -* [efCNN](./python-scripts/runCancerCNN.py) -* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py) -* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py) -*** -## Input data -The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder . -For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`. -*** -## python scripts -Each of the three datasets above corresponds to a differnet python scripts in this repositiory: -1. `runSimulations*.py` -2. `runCancer*.py` -3. `runSingle*.py` -*** -## R scripts -Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory: -1. `simulated*.ipynb` -2. `cancer*.ipynb` -3. `single-cell*.ipynb` - -*** -## Install the R software environment -Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel` -*** -## Install the python software environment -You need to build a virtual environment for python. -You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`. - +# DL-mo +## A benchmark study of deep learning based multi-omics data fusion methods for cancer +*** + +We here compare the performances of 10 deep learning methods in three contexts: +1. Simulated datasets +2. Cancer datasets +3. Single-cell datasets + +We use `python` and `R` to code the programs. The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder . +*** +## 16 deep learning methods +* [lfAE](./python-scripts/runCancerAE2.py) +* [efAE](./python-scripts/runCancerAE.py) +* [lfDAE](./python-scripts/runCancerDAE2.py) +* [efDAE](./python-scripts/runCancerDAE.py) +* [lfVAE](./python-scripts/runCancerVAE2.py) +* [efVAE](./python-scripts/runCancerVAE.py) +* [lfSVAE](./python-scripts/runCancerSVAE2.py) +* [efSVAE](./python-scripts/runCancerSVAE.py) +* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py) +* [efmmdVAE](./python-scripts/runCancerMMDVAE.py) +* [lfNN](./python-scripts/runCancerDNN.py) +* [efNN](./python-scripts/runCancerDNN.py) +* [lfCNN](./python-scripts/runCancerCNN.py) +* [efCNN](./python-scripts/runCancerCNN.py) +* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py) +* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py) +*** +## Input data +The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder . +For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`. +*** +## python scripts +Each of the three datasets above corresponds to a differnet python scripts in this repositiory: +1. `runSimulations*.py` +2. `runCancer*.py` +3. `runSingle*.py` +*** +## R scripts +Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory: +1. `simulated*.ipynb` +2. `cancer*.ipynb` +3. `single-cell*.ipynb` + +*** +## Install the R software environment +Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel` +*** +## Install the python software environment +You need to build a virtual environment for python. +You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`. +