|
a/README.md |
|
b/README.md |
1 |
# DL-mo |
1 |
# DL-mo
|
2 |
## A benchmark study of deep learning based multi-omics data fusion methods for cancer |
2 |
## A benchmark study of deep learning based multi-omics data fusion methods for cancer
|
3 |
*** |
3 |
***
|
4 |
 |
4 |

|
5 |
We here compare the performances of 10 deep learning methods in three contexts: |
5 |
We here compare the performances of 10 deep learning methods in three contexts:
|
6 |
1. Simulated datasets |
6 |
1. Simulated datasets
|
7 |
2. Cancer datasets |
7 |
2. Cancer datasets
|
8 |
3. Single-cell datasets |
8 |
3. Single-cell datasets |
9 |
|
9 |
|
10 |
We use `python` and `R` to code the programs. The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder . |
10 |
We use `python` and `R` to code the programs. The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder .
|
11 |
*** |
11 |
***
|
12 |
## 16 deep learning methods |
12 |
## 16 deep learning methods
|
13 |
* [lfAE](./python-scripts/runCancerAE2.py) |
13 |
* [lfAE](./python-scripts/runCancerAE2.py)
|
14 |
* [efAE](./python-scripts/runCancerAE.py) |
14 |
* [efAE](./python-scripts/runCancerAE.py)
|
15 |
* [lfDAE](./python-scripts/runCancerDAE2.py) |
15 |
* [lfDAE](./python-scripts/runCancerDAE2.py)
|
16 |
* [efDAE](./python-scripts/runCancerDAE.py) |
16 |
* [efDAE](./python-scripts/runCancerDAE.py)
|
17 |
* [lfVAE](./python-scripts/runCancerVAE2.py) |
17 |
* [lfVAE](./python-scripts/runCancerVAE2.py)
|
18 |
* [efVAE](./python-scripts/runCancerVAE.py) |
18 |
* [efVAE](./python-scripts/runCancerVAE.py)
|
19 |
* [lfSVAE](./python-scripts/runCancerSVAE2.py) |
19 |
* [lfSVAE](./python-scripts/runCancerSVAE2.py)
|
20 |
* [efSVAE](./python-scripts/runCancerSVAE.py) |
20 |
* [efSVAE](./python-scripts/runCancerSVAE.py)
|
21 |
* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py) |
21 |
* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py)
|
22 |
* [efmmdVAE](./python-scripts/runCancerMMDVAE.py) |
22 |
* [efmmdVAE](./python-scripts/runCancerMMDVAE.py)
|
23 |
* [lfNN](./python-scripts/runCancerDNN.py) |
23 |
* [lfNN](./python-scripts/runCancerDNN.py)
|
24 |
* [efNN](./python-scripts/runCancerDNN.py) |
24 |
* [efNN](./python-scripts/runCancerDNN.py)
|
25 |
* [lfCNN](./python-scripts/runCancerCNN.py) |
25 |
* [lfCNN](./python-scripts/runCancerCNN.py)
|
26 |
* [efCNN](./python-scripts/runCancerCNN.py) |
26 |
* [efCNN](./python-scripts/runCancerCNN.py)
|
27 |
* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py) |
27 |
* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py)
|
28 |
* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py) |
28 |
* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py)
|
29 |
*** |
29 |
***
|
30 |
## Input data |
30 |
## Input data
|
31 |
The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder . |
31 |
The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder .
|
32 |
For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`. |
32 |
For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`.
|
33 |
*** |
33 |
***
|
34 |
## python scripts |
34 |
## python scripts
|
35 |
Each of the three datasets above corresponds to a differnet python scripts in this repositiory: |
35 |
Each of the three datasets above corresponds to a differnet python scripts in this repositiory:
|
36 |
1. `runSimulations*.py` |
36 |
1. `runSimulations*.py`
|
37 |
2. `runCancer*.py` |
37 |
2. `runCancer*.py`
|
38 |
3. `runSingle*.py` |
38 |
3. `runSingle*.py`
|
39 |
*** |
39 |
***
|
40 |
## R scripts |
40 |
## R scripts
|
41 |
Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory: |
41 |
Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory:
|
42 |
1. `simulated*.ipynb` |
42 |
1. `simulated*.ipynb`
|
43 |
2. `cancer*.ipynb` |
43 |
2. `cancer*.ipynb`
|
44 |
3. `single-cell*.ipynb` |
44 |
3. `single-cell*.ipynb` |
45 |
|
45 |
|
46 |
*** |
46 |
***
|
47 |
## Install the R software environment |
47 |
## Install the R software environment
|
48 |
Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel` |
48 |
Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel`
|
49 |
*** |
49 |
***
|
50 |
## Install the python software environment |
50 |
## Install the python software environment
|
51 |
You need to build a virtual environment for python. |
51 |
You need to build a virtual environment for python.
|
52 |
You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`. |
52 |
You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`. |
53 |
|
53 |
|