a/README.md b/README.md
1
# DL-mo
1
# DL-mo
2
## A benchmark study of deep learning based multi-omics data fusion methods for cancer
2
## A benchmark study of deep learning based multi-omics data fusion methods for cancer
3
***
3
***
4
![Multi-Omics](./img/3.png "Multi-Omics")  
4
![Multi-Omics](https://easymed.ai/models/AlyssaS/DL-mo/git/ci/main/tree/img/3.png "Multi-Omics")  
5
We here compare the performances of 10 deep learning methods in three contexts: 
5
We here compare the performances of 10 deep learning methods in three contexts: 
6
1. Simulated datasets
6
1. Simulated datasets
7
2. Cancer datasets
7
2. Cancer datasets
8
3. Single-cell datasets       
8
3. Single-cell datasets       
9
9
10
We use `python` and `R` to code the programs.  The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder .
10
We use `python` and `R` to code the programs.  The python scripts are in `./python-scripts/` folder .The R scripts are in `./R-scripts/` folder .
11
***
11
***
12
## 16 deep learning methods
12
## 16 deep learning methods
13
* [lfAE](./python-scripts/runCancerAE2.py)
13
* [lfAE](./python-scripts/runCancerAE2.py)
14
* [efAE](./python-scripts/runCancerAE.py) 
14
* [efAE](./python-scripts/runCancerAE.py) 
15
* [lfDAE](./python-scripts/runCancerDAE2.py) 
15
* [lfDAE](./python-scripts/runCancerDAE2.py) 
16
* [efDAE](./python-scripts/runCancerDAE.py) 
16
* [efDAE](./python-scripts/runCancerDAE.py) 
17
* [lfVAE](./python-scripts/runCancerVAE2.py)
17
* [lfVAE](./python-scripts/runCancerVAE2.py)
18
* [efVAE](./python-scripts/runCancerVAE.py)
18
* [efVAE](./python-scripts/runCancerVAE.py)
19
* [lfSVAE](./python-scripts/runCancerSVAE2.py)
19
* [lfSVAE](./python-scripts/runCancerSVAE2.py)
20
* [efSVAE](./python-scripts/runCancerSVAE.py) 
20
* [efSVAE](./python-scripts/runCancerSVAE.py) 
21
* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py) 
21
* [lfmmdVAE](./python-scripts/runCancerMMDVAE2.py) 
22
* [efmmdVAE](./python-scripts/runCancerMMDVAE.py) 
22
* [efmmdVAE](./python-scripts/runCancerMMDVAE.py) 
23
* [lfNN](./python-scripts/runCancerDNN.py) 
23
* [lfNN](./python-scripts/runCancerDNN.py) 
24
* [efNN](./python-scripts/runCancerDNN.py)
24
* [efNN](./python-scripts/runCancerDNN.py)
25
* [lfCNN](./python-scripts/runCancerCNN.py) 
25
* [lfCNN](./python-scripts/runCancerCNN.py) 
26
* [efCNN](./python-scripts/runCancerCNN.py)
26
* [efCNN](./python-scripts/runCancerCNN.py)
27
* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py)
27
* [moGCN](./python-scripts/MOGONET/main_mogonet_zly.py)
28
* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py)
28
* [moGAT](./python-scripts/MOGONET/main_mogonet_zyh.py)
29
***
29
***
30
## Input data
30
## Input data
31
The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder .    
31
The data for python scripts is in `./python-scripts/data/` folder .The data for R scripts is in `./R-scripts/data/` folder .    
32
For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`.
32
For python-scripts,Simulated datasets are in `./python-scripts/data/simulations`,Cancer datasets are in `./python-scripts/data/cancer` ,Single-cell datasets are in `./python-scripts/data/single-cell`.
33
***
33
***
34
## python scripts
34
## python scripts
35
Each of the three datasets above corresponds to a differnet python scripts in this repositiory:
35
Each of the three datasets above corresponds to a differnet python scripts in this repositiory:
36
1. `runSimulations*.py`
36
1. `runSimulations*.py`
37
2. `runCancer*.py`
37
2. `runCancer*.py`
38
3. `runSingle*.py`
38
3. `runSingle*.py`
39
***
39
***
40
## R scripts
40
## R scripts
41
Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory:
41
Each of the three datasets above corresponds to a differnet Jupyter notebook in this repositiory:
42
1. `simulated*.ipynb`
42
1. `simulated*.ipynb`
43
2. `cancer*.ipynb`
43
2. `cancer*.ipynb`
44
3. `single-cell*.ipynb`
44
3. `single-cell*.ipynb`
45
45
46
***
46
***
47
## Install the R software environment
47
## Install the R software environment
48
Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel`
48
Use conda to create a new environment: `conda create -n momix -c conda-forge -c bioconda -c lcantini momix r-irkernel`
49
***
49
***
50
## Install the python software environment
50
## Install the python software environment
51
You need to build a virtual environment for python.    
51
You need to build a virtual environment for python.    
52
You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`.
52
You need to install the following main libraries: `Python==3.7.0,Tensorflow==1.15.0, scikit-learn==0.20.0, Jupyter==1.0.0`.
53
53