--- a +++ b/python-scripts/runSingleVAE2.py @@ -0,0 +1,63 @@ +from keras.layers import Input, Dense +from keras.models import Model +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from sklearn.cluster import KMeans +from sklearn.cluster import k_means +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import normalize +import time +from sklearn import metrics +from myUtils import * +from VAEclass import VAE +#from AEclass import AE +import os + +if __name__ == '__main__': + datapath = 'data/single-cell/' + resultpath = 'result/single-cell/' + # groundtruth = np.loadtxt('{}/c.txt'.format(datapath)) + # groundtruth = list(np.int_(groundtruth)) + + omics = np.loadtxt('{}/omics.txt'.format(datapath)) + omics = np.transpose(omics) + omics1 = omics[0:206] + omics2 = omics[206:412] + omics1 = normalize(omics1, axis=0, norm='max') + omics2 = normalize(omics2, axis=0, norm='max') + #omics = np.concatenate((omics1, omics2), axis=1) + + encoding1_dim1 = 2048 + encoding2_dim1 = 512 + middle_dim1 = 1 + dims1 = [encoding1_dim1, encoding2_dim1, middle_dim1] + ae1 = VAE(omics1, dims1) + ae1.train() + ae1.autoencoder.summary() + encoded_factor1 = ae1.predict(omics1) + + encoding1_dim2 = 2048 + encoding2_dim2 = 512 + middle_dim2 = 1 + dims2 = [encoding1_dim2, encoding2_dim2, middle_dim2] + ae2 = VAE(omics2, dims2) + ae2.train() + ae2.autoencoder.summary() + encoded_factor2 = ae2.predict(omics2) + + + encoded_factors = np.concatenate((encoded_factor1, encoded_factor2), axis=1) + + if not os.path.exists("{}/VAE_FAETC_EM.txt".format(resultpath)): + os.mknod("{}/VAE_FAETC_EM.txt".format(resultpath)) + np.savetxt("{}/VAE_FAETC_EM.txt".format(resultpath), encoded_factors) + + + + + + + + +