a b/python-scripts/runSingleSVAE.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from SVAEclass import VAE
14
import os
15
16
if __name__ == '__main__':
17
    datapath = 'data/single-cell/'
18
    resultpath = 'result/single-cell/'
19
    # groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
20
    # groundtruth = list(np.int_(groundtruth))
21
22
    omics = np.loadtxt('{}/omics.txt'.format(datapath))
23
    omics = np.transpose(omics)
24
    omics1 = omics[0:206]
25
    omics2 = omics[206:412]
26
    omics1 = normalize(omics1, axis=0, norm='max')
27
    omics2 = normalize(omics2, axis=0, norm='max')
28
    print(omics1.shape)
29
    print(omics2.shape)
30
    omics = np.concatenate((omics1, omics2), axis=1)
31
32
    data = omics
33
    # input_dim = data.shape[1]
34
    encoding1_dim = 4096
35
    encoding2_dim = 1024
36
    middle_dim = 2
37
    dims = [encoding1_dim, encoding2_dim, middle_dim]
38
    vae = VAE(data, dims)
39
    vae.autoencoder.summary()
40
    vae.train()
41
    encoded_factors = vae.predict(data)
42
    if not os.path.exists("{}/SVAE_FCTAE_EM.txt".format(resultpath)):
43
        os.mknod("{}/SVAE_FCTAE_EM.txt".format(resultpath))
44
    np.savetxt("{}/SVAE_FCTAE_EM.txt".format(resultpath), encoded_factors)
45
46
47
48
49
50
51
52
53