--- a +++ b/python-scripts/runSingleDNN.py @@ -0,0 +1,445 @@ +import numpy as np +from sklearn.preprocessing import normalize +from keras.layers import Input, Dense,concatenate,Dropout,average +from keras.models import Model +from keras import backend as K +from sklearn.metrics import roc_auc_score, f1_score, accuracy_score +import numpy as np +from sklearn.model_selection import StratifiedKFold +from keras.layers import Input, Dense,concatenate,Dropout,average +from keras.models import Model +import keras +from sklearn.metrics import classification_report +#训练两个神经网络 +def build_NN_model1(omics,class_num): + omics1=omics[0] + omics2=omics[1] + + input1_dim=omics1.shape[1] + input2_dim = omics2.shape[1] + + # class_num = 4 + + + #omics1 + input_factor1 = Input(shape=(input1_dim,),name='omics1') + # NN + omics1_nn = Dense(1000, activation='relu')(input_factor1) + omics1_nn = Dropout(0.1)(omics1_nn) + # omics1_nn = Dense(500, activation='relu')(omics1_nn) + # omics1_nn = Dropout(0.1)(omics1_nn) + omics1_nn = Dense(100, activation='relu')(omics1_nn) + omics1_nn = Dropout(0.1)(omics1_nn) + + + # omics2 + input_factor2 = Input(shape=(input2_dim,), name='omics2') + # NN + omics2_nn = Dense(1000, activation='relu')(input_factor2) + omics2_nn = Dropout(0.1)(omics2_nn) + # omics2_nn = Dense(100, activation='relu')(omics2_nn) + # omics2_nn = Dropout(0.1)(omics2_nn) + omics2_nn = Dense(100, activation='relu')(omics2_nn) + omics2_nn = Dropout(0.1)(omics2_nn) + + + + mid_concat=concatenate([omics1_nn, omics2_nn]) + # classifier + nn_classifier = Dense(100, activation='relu')(mid_concat) + nn_classifier=Dropout(0.1)(nn_classifier) + nn_classifier = Dense(50, activation='relu')(nn_classifier) + nn_classifier = Dropout(0.1)(nn_classifier) + # nn_classifier = Dense(50, activation='relu')(nn_classifier) + # nn_classifier = Dropout(0.1)(nn_classifier) + nn_classifier = Dense(10, activation='relu')(nn_classifier) + #nn_classifier = Dropout(0.1)(nn_classifier) + nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier) + my_metrics = { + 'classifier': ['acc'] + } + my_loss = { + 'classifier': 'categorical_crossentropy', \ + } + adam=keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08) + zlyNN = Model(inputs=[input_factor1,input_factor2], outputs=nn_classifier) + zlyNN.compile(optimizer=adam, loss=my_loss, metrics=my_metrics) + return zlyNN + + + +def build_NN_model2(omics,class_num): + + input_dim=omics.shape[1] + + #class_num = 5 + + + #omics1 + input_factor1 = Input(shape=(input_dim,),name='omics') + # NN + omics1_nn = Dense(2000, activation='relu')(input_factor1) + omics1_nn = Dropout(0.1)(omics1_nn) + omics1_nn = Dense(500, activation='relu')(omics1_nn) + omics1_nn = Dropout(0.1)(omics1_nn) + omics1_nn = Dense(100, activation='relu')(omics1_nn) + omics1_nn = Dropout(0.1)(omics1_nn) + # omics1_nn1 = Dense(100, activation='relu')(omics1_nn1) + # omics1_nn1 = Dropout(0.1)(omics1_nn1) + # omics1_nn = Dense(10, activation='relu')(omics1_nn) + # omics1_nn = Dropout(0.1)(omics1_nn) + # omics1_nn = average([omics1_nn1,omics1_nn]) + # omics1_nn = Dense(100, activation='relu')(omics1_nn) + # omics1_nn = Dropout(0.1)(omics1_nn) + nn_classifier = Dense(50, activation='relu')(omics1_nn) + # nn_classifier = Dropout(0.1)(nn_classifier) + if class_num==2: + nn_classifier = Dense(1, activation='sigmoid', name='classifier')(nn_classifier) + else: + nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier) + my_metrics_multi = { + 'classifier': ['acc'] + } + my_loss_multi = { + 'classifier': 'categorical_crossentropy', \ + } + my_metrics_bi = { + 'classifier': ['acc'] + } + my_loss_bi = { + 'classifier': 'binary_crossentropy', \ + } + # compile autoencoder + # self.autoencoder.compile(optimizer='adam', loss='mse') + zlyNN = Model(inputs=[input_factor1], outputs=nn_classifier) + if class_num==2: + zlyNN.compile(optimizer='adam', loss=my_loss_bi, metrics=my_metrics_bi) + else: + zlyNN.compile(optimizer='adam', loss=my_loss_multi, metrics=my_metrics_multi) + return zlyNN + + + +if __name__ == '__main__': + + + # datatypes=["equal","heterogeneous"] + # typenums=[5,10,15] + # noise_factor=0.5 + # savepath='./result/simulations/lfnn_res.txt' + # with open(savepath, 'w') as f2: + # for datatype in datatypes: + # f2.write(datatype+'\n') + # for typenum in typenums: + # f2.write(str(typenum)+'\n') + # datapath='data/simulations/{}/{}'.format(datatype, typenum) + # resultpath='result/simulations/{}/{}'.format(datatype, typenum) + # labels = np.loadtxt('{}/c.txt'.format(datapath)) + # # groundtruth = list(np.int_(groundtruth)) + + # omics1 = np.loadtxt('{}/o1.txt'.format(datapath)) + # omics1 = np.transpose(omics1) + # omics1 = normalize(omics1, axis=0, norm='max') + + # omics2 = np.loadtxt('{}/o2.txt'.format(datapath)) + # omics2 = np.transpose(omics2) + # omics2 = normalize(omics2, axis=0, norm='max') + + # omics3 = np.loadtxt('{}/o3.txt'.format(datapath)) + # omics3 = np.transpose(omics3) + # omics3 = normalize(omics3, axis=0, norm='max') + + # omics = np.concatenate((omics1, omics2, omics3), axis=1) + + # # k折交叉验证 + # all_acc = [] + # all_f1_macro = [] + # all_f1_weighted = [] + + + # kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1) + # for train_ix, test_ix in kfold.split(omics, labels): + + # omics_tobuild=[omics1,omics2,omics3] + # train_X_1=omics1[train_ix] + # train_X_2=omics2[train_ix] + # train_X_3=omics3[train_ix] + + # test_X_1=omics1[test_ix] + # test_X_2=omics2[test_ix] + # test_X_3=omics3[test_ix] + # # select rows + # train_X, test_X = [train_X_1,train_X_2,train_X_3],[test_X_1,test_X_2,test_X_3] + # #train_X, test_X = (train_X_1,train_X_2,train_X_3),(test_X_1,test_X_2,test_X_3) + # train_y, test_y = labels[train_ix], labels[test_ix] + # # summarize train and test composition + # unique, count = np.unique(train_y, return_counts=True) + # train_data_count = dict(zip(unique, count)) + # print('train:' + str(train_data_count)) + # unique, count = np.unique(test_y, return_counts=True) + # test_data_count = dict(zip(unique, count)) + # print('test:' + str(test_data_count)) + + # class_num=typenum + # # 多分类的输出 + # train_y = list(np.int_(train_y)) + # # groundtruth = np.int_(groundtruth) + # y = [] + # num = len(train_y) + # for i in range(num): + # tmp = np.zeros(class_num, dtype='uint8') + # tmp[train_y[i]] = 1 + # y.append(tmp) + # train_y = np.array(y) + + # test_y = list(np.int_(test_y)) + # # groundtruth = np.int_(groundtruth) + # y = [] + # num = len(test_y) + # for i in range(num): + # tmp = np.zeros(class_num, dtype='uint8') + # tmp[test_y[i]] = 1 + # y.append(tmp) + # test_y = np.array(y) + + # model = build_NN_model1(omics_tobuild,class_num) + # history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=16, shuffle=True,validation_data=(test_X, test_y)) + # y_true = [] + # for i in range(len(test_y)): + # y_true.append(np.argmax(test_y[i])) + # predictions = model.predict(test_X) + # y_pred = [] + # for i in range(len(predictions)): + # y_pred.append(np.argmax(predictions[i])) + # acc = accuracy_score(y_true, y_pred) + # f1_macro = f1_score(y_true, y_pred, average='macro') + # # f1_micro=f1_score(y_true, y_pred, average='micro') + # f1_weighted = f1_score(y_true, y_pred, average='weighted') + # all_acc.append(acc) + # all_f1_macro.append(f1_macro) + # all_f1_weighted.append(f1_weighted) + + + # print(classification_report(y_true, y_pred)) + # # print_precison_recall_f1(y_true, y_pred) + # print('caicai' * 20) + # print( + # 'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\n'. \ + # format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted)) + # avg_acc = np.mean(all_acc) + # avg_f1_macro = np.mean(all_f1_macro) + # avg_f1_weighted = np.mean(all_f1_weighted) + + # print( + # 'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + # format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + # f2.write('acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + # format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + # f2.write('*'*20) + + + + + + # groundtruth = np.loadtxt('{}/c.txt'.format(datapath)) + # groundtruth = list(np.int_(groundtruth)) + + + # savepath='./result/single-cell/efnn_res.txt' + # with open(savepath, 'w') as f2: + # datapath = 'data/single-cell/' + # resultpath = 'result/single-cell/' + # labels = np.loadtxt('{}/c.txt'.format(datapath)) + # # groundtruth = list(np.int_(groundtruth)) + + # omics = np.loadtxt('{}/omics.txt'.format(datapath)) + # omics = np.transpose(omics) + # omics1=omics[0:206] + # omics2=omics[206:412] + # omics1 = normalize(omics1, axis=0, norm='max') + # omics2 = normalize(omics2, axis=0, norm='max') + # omics = np.concatenate((omics1, omics2), axis=1) + + + # # k折交叉验证 + # all_acc = [] + # all_f1_macro = [] + # all_f1_weighted = [] + + + # kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1) + # for train_ix, test_ix in kfold.split(omics, labels): + + + # train_X, test_X = omics[train_ix], omics[test_ix] + # train_y, test_y = labels[train_ix], labels[test_ix] + # # summarize train and test composition + # unique, count = np.unique(train_y, return_counts=True) + # train_data_count = dict(zip(unique, count)) + # print('train:' + str(train_data_count)) + # unique, count = np.unique(test_y, return_counts=True) + # test_data_count = dict(zip(unique, count)) + # print('test:' + str(test_data_count)) + + # class_num=3 + # # 多分类的输出 + # train_y = list(np.int_(train_y)) + # # groundtruth = np.int_(groundtruth) + # y = [] + # num = len(train_y) + # for i in range(num): + # tmp = np.zeros(class_num, dtype='uint8') + # tmp[train_y[i]] = 1 + # y.append(tmp) + # train_y = np.array(y) + + # test_y = list(np.int_(test_y)) + # # groundtruth = np.int_(groundtruth) + # y = [] + # num = len(test_y) + # for i in range(num): + # tmp = np.zeros(class_num, dtype='uint8') + # tmp[test_y[i]] = 1 + # y.append(tmp) + # test_y = np.array(y) + + # model = build_NN_model2(omics, class_num) + # history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=8, shuffle=True, + # validation_data=(test_X, test_y)) + # y_true = [] + # for i in range(len(test_y)): + # y_true.append(np.argmax(test_y[i])) + # predictions = model.predict(test_X) + # y_pred = [] + # for i in range(len(predictions)): + # y_pred.append(np.argmax(predictions[i])) + # acc = accuracy_score(y_true, y_pred) + # f1_macro = f1_score(y_true, y_pred, average='macro') + # # f1_micro=f1_score(y_true, y_pred, average='micro') + # f1_weighted = f1_score(y_true, y_pred, average='weighted') + # all_acc.append(acc) + # all_f1_macro.append(f1_macro) + # all_f1_weighted.append(f1_weighted) + + + # print(classification_report(y_true, y_pred)) + # # print_precison_recall_f1(y_true, y_pred) + # print('caicai' * 20) + # print( + # 'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\n'. \ + # format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted)) + # avg_acc = np.mean(all_acc) + # avg_f1_macro = np.mean(all_f1_macro) + # avg_f1_weighted = np.mean(all_f1_weighted) + + # print( + # 'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + # format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + # f2.write('acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + # format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + + + savepath='./result/single-cell/lfnn_res1.txt' + with open(savepath, 'w') as f2: + datapath = 'data/single-cell/' + resultpath = 'result/single-cell/' + labels = np.loadtxt('{}/c.txt'.format(datapath)) + # groundtruth = list(np.int_(groundtruth)) + + omics = np.loadtxt('{}/omics.txt'.format(datapath)) + omics = np.transpose(omics) + omics1=omics[0:206] + omics2=omics[206:412] + omics1 = normalize(omics1, axis=0, norm='max') + omics2 = normalize(omics2, axis=0, norm='max') + omics = np.concatenate((omics1, omics2), axis=1) + + + # k折交叉验证 + all_acc = [] + all_f1_macro = [] + all_f1_weighted = [] + + + kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1) + for train_ix, test_ix in kfold.split(omics, labels): + + omics_tobuild=[omics1,omics2] + train_X_1=omics1[train_ix] + train_X_2=omics2[train_ix] + + test_X_1=omics1[test_ix] + test_X_2=omics2[test_ix] + + # select rows + train_X, test_X = [train_X_1,train_X_2],[test_X_1,test_X_2] + train_y, test_y = labels[train_ix], labels[test_ix] + # summarize train and test composition + unique, count = np.unique(train_y, return_counts=True) + train_data_count = dict(zip(unique, count)) + print('train:' + str(train_data_count)) + unique, count = np.unique(test_y, return_counts=True) + test_data_count = dict(zip(unique, count)) + print('test:' + str(test_data_count)) + + class_num=3 + # 多分类的输出 + train_y = list(np.int_(train_y)) + # groundtruth = np.int_(groundtruth) + y = [] + num = len(train_y) + for i in range(num): + tmp = np.zeros(class_num, dtype='uint8') + tmp[train_y[i]] = 1 + y.append(tmp) + train_y = np.array(y) + + test_y = list(np.int_(test_y)) + # groundtruth = np.int_(groundtruth) + y = [] + num = len(test_y) + for i in range(num): + tmp = np.zeros(class_num, dtype='uint8') + tmp[test_y[i]] = 1 + y.append(tmp) + test_y = np.array(y) + + model = build_NN_model1(omics_tobuild,class_num) + history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=32, shuffle=True,validation_data=(test_X, test_y)) + y_true = [] + for i in range(len(test_y)): + y_true.append(np.argmax(test_y[i])) + predictions = model.predict(test_X) + y_pred = [] + for i in range(len(predictions)): + y_pred.append(np.argmax(predictions[i])) + acc = accuracy_score(y_true, y_pred) + f1_macro = f1_score(y_true, y_pred, average='macro') + # f1_micro=f1_score(y_true, y_pred, average='micro') + f1_weighted = f1_score(y_true, y_pred, average='weighted') + all_acc.append(acc) + all_f1_macro.append(f1_macro) + all_f1_weighted.append(f1_weighted) + + + print(classification_report(y_true, y_pred)) + break + # print_precison_recall_f1(y_true, y_pred) + print('caicai' * 20) + print( + 'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\n'. \ + format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted)) + avg_acc = np.mean(all_acc) + avg_f1_macro = np.mean(all_f1_macro) + avg_f1_weighted = np.mean(all_f1_weighted) + + print( + 'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + f2.write('acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \ + format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted)) + + + + +