a b/python-scripts/runSingleDAE.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from DAEclass import DAE
14
import os
15
16
if __name__ == '__main__':
17
    datapath = 'data/single-cell/'
18
    resultpath = 'result/single-cell/'
19
    # groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
20
    # groundtruth = list(np.int_(groundtruth))
21
22
    omics = np.loadtxt('{}/omics.txt'.format(datapath))
23
    omics = np.transpose(omics)
24
    omics1 = omics[0:206]
25
    omics2 = omics[206:412]
26
    omics1 = normalize(omics1, axis=0, norm='max')
27
    omics2 = normalize(omics2, axis=0, norm='max')
28
    omics = np.concatenate((omics1, omics2), axis=1)
29
30
    data = omics
31
    input_dim = data.shape[1]
32
    encoding1_dim = 4096
33
    encoding2_dim = 1024
34
    middle_dim = 2
35
    dims = [encoding1_dim, encoding2_dim, middle_dim]
36
    # ae = AE(data, dims)
37
    # ae.train()
38
    # encoded_factors = ae.predict(data)
39
40
    noise_factor = 0.1
41
    dae = DAE(data, dims, noise_factor)
42
    dae.autoencoder.summary()
43
    dae.train()
44
    encoded_factors = dae.predict(data)
45
46
    if not os.path.exists("{}/DAE_FCTAE_EM.txt".format(resultpath)):
47
        os.mknod("{}/DAE_FCTAE_EM.txt".format(resultpath))
48
    np.savetxt("{}/DAE_FCTAE_EM.txt".format(resultpath), encoded_factors)
49
50
51
52
53
54
55
56
57