|
a |
|
b/python-scripts/runSingleCluster.py |
|
|
1 |
import numpy as np |
|
|
2 |
from sklearn.cluster import KMeans |
|
|
3 |
import numpy as np |
|
|
4 |
from sklearn.metrics import silhouette_score, davies_bouldin_score |
|
|
5 |
from sklearn.preprocessing import normalize |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
|
|
|
9 |
# data_names = ['VAE_FCTAE_EM','AE_FAETC_EM', 'AE_FCTAE_EM', 'DAE_FAETC_EM', 'DAE_FCTAE_EM', 'LSTMVAE_FCTAE_EM'] |
|
|
10 |
data_names = ['SVAE_FCTAE_EM','MMDVAE_EM'] |
|
|
11 |
for data_name in data_names: |
|
|
12 |
# encoded_factors=np.loadtxt('./result/cancer_do_cluster/{f}/{d}.txt'.format(f=f, d=data_name)) |
|
|
13 |
encoded_factors=np.loadtxt('./result/single-cell/{d}.txt'.format(d=data_name)) |
|
|
14 |
savepath='./result/single-cell/{d}_cluster_result.txt'.format(d=data_name) |
|
|
15 |
with open(savepath, 'w') as f2: |
|
|
16 |
print('method:{d}\n'.format(d=data_name)) |
|
|
17 |
f2.write('method:{d}\n'.format(d=data_name)) |
|
|
18 |
for typenum in range(2,7,1): |
|
|
19 |
all_silhouette=[] |
|
|
20 |
all_DBI=[] |
|
|
21 |
for i in range(100): |
|
|
22 |
clf = KMeans(n_clusters=typenum) |
|
|
23 |
clf.fit(encoded_factors) # 模型训练 |
|
|
24 |
labels = clf.labels_ |
|
|
25 |
silhouetteScore = silhouette_score(encoded_factors, labels, metric='euclidean') |
|
|
26 |
all_silhouette.append(silhouetteScore) |
|
|
27 |
davies_bouldinScore = davies_bouldin_score(encoded_factors, labels) |
|
|
28 |
all_DBI.append(davies_bouldinScore) |
|
|
29 |
avg_silhouette=np.mean(all_silhouette) |
|
|
30 |
avg_DBI=np.mean(all_DBI) |
|
|
31 |
|
|
|
32 |
# print("silhouetteScore:", avg_silhouette) |
|
|
33 |
# print("davies_bouldinScore:", avg_DBI) |
|
|
34 |
print('k:{k}\nsilhouetteScore:{s}\ndavies_bouldinScore:{d}\n'.format(k=typenum, s=avg_silhouette,d=avg_DBI)) |
|
|
35 |
f2.write('*'*20+'\n') |
|
|
36 |
f2.write('k:{k}\nsilhouetteScore:{s}\ndavies_bouldinScore:{d}\n'.format(k=typenum, s=avg_silhouette,d=avg_DBI)) |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
#直接拼接 |
|
|
40 |
# files = ['aml', 'breast', 'colon', 'kidney', 'liver', 'lung', 'melanoma', 'ovarian', 'sarcoma','gbm'] |
|
|
41 |
# for f in files: |
|
|
42 |
# datapath='./data/cancer_do_cluster/{f}'.format(f=f) |
|
|
43 |
# omics1 = np.loadtxt('{}/log_exp_omics.txt'.format(datapath)) |
|
|
44 |
# omics1 = np.transpose(omics1) |
|
|
45 |
# omics1 = normalize(omics1, axis=0, norm='max') |
|
|
46 |
# print(omics1.shape) |
|
|
47 |
# omics2 = np.loadtxt('{}/log_mirna_omics.txt'.format(datapath)) |
|
|
48 |
# omics2 = np.transpose(omics2) |
|
|
49 |
# omics2 = normalize(omics2, axis=0, norm='max') |
|
|
50 |
# print(omics2.shape) |
|
|
51 |
# omics3 = np.loadtxt('{}/methy_omics.txt'.format(datapath)) |
|
|
52 |
# omics3 = np.transpose(omics3) |
|
|
53 |
# omics3 = normalize(omics3, axis=0, norm='max') |
|
|
54 |
# print(omics3.shape) |
|
|
55 |
# omics = np.concatenate((omics1, omics2, omics3), axis=1) |
|
|
56 |
# encoded_factors=omics |
|
|
57 |
# savepath='./result/cancer_do_cluster/{f}/Contact_cluster_result.txt'.format(f=f) |
|
|
58 |
# with open(savepath, 'w') as f2: |
|
|
59 |
# print('cancer:{f}\nmethod:直接拼接'.format(f=f)) |
|
|
60 |
# f2.write('cancer:{f}\nmethod:直接拼接\n'.format(f=f)) |
|
|
61 |
# for typenum in range(2,7,1): |
|
|
62 |
# all_silhouette=[] |
|
|
63 |
# all_DBI=[] |
|
|
64 |
# for i in range(100): |
|
|
65 |
# clf = KMeans(n_clusters=typenum) |
|
|
66 |
# clf.fit(encoded_factors) # 模型训练 |
|
|
67 |
# labels = clf.labels_ |
|
|
68 |
# silhouetteScore = silhouette_score(encoded_factors, labels, metric='euclidean') |
|
|
69 |
# all_silhouette.append(silhouetteScore) |
|
|
70 |
# davies_bouldinScore = davies_bouldin_score(encoded_factors, labels) |
|
|
71 |
# all_DBI.append(davies_bouldinScore) |
|
|
72 |
# avg_silhouette=np.mean(all_silhouette) |
|
|
73 |
# avg_DBI=np.mean(all_DBI) |
|
|
74 |
|
|
|
75 |
# # print("silhouetteScore:", avg_silhouette) |
|
|
76 |
# # print("davies_bouldinScore:", avg_DBI) |
|
|
77 |
# print('k:{k}\nsilhouetteScore:{s}\ndavies_bouldinScore:{d}\n'.format(k=typenum, s=avg_silhouette,d=avg_DBI)) |
|
|
78 |
# f2.write('zly'*20+'\n') |
|
|
79 |
# f2.write('k:{k}\nsilhouetteScore:{s}\ndavies_bouldinScore:{d}\n'.format(k=typenum, s=avg_silhouette,d=avg_DBI)) |
|
|
80 |
|