a b/python-scripts/runSimulationsVAE.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from VAEclass import VAE
14
import os
15
16
if __name__ == '__main__':
17
    datatypes=["equal","heterogeneous"]
18
    typenums=[5,10,15]
19
    for datatype in datatypes:
20
        for typenum in typenums:
21
            datapath='data/simulations/{}/{}'.format(datatype, typenum)
22
            resultpath='result/simulations/{}/{}'.format(datatype, typenum)
23
            groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
24
            groundtruth = list(np.int_(groundtruth))
25
26
            omics1 = np.loadtxt('{}/o1.txt'.format(datapath))
27
            omics1 = np.transpose(omics1)
28
            omics1 = normalize(omics1, axis=0, norm='max')
29
30
            omics2 = np.loadtxt('{}/o2.txt'.format(datapath))
31
            omics2 = np.transpose(omics2)
32
            omics2 = normalize(omics2, axis=0, norm='max')
33
34
            omics3 = np.loadtxt('{}/o3.txt'.format(datapath))
35
            omics3 = np.transpose(omics3)
36
            omics3 = normalize(omics3, axis=0, norm='max')
37
38
            omics = np.concatenate((omics1, omics2, omics3), axis=1)
39
40
            data = omics
41
            # input_dim = data.shape[1]
42
            encoding1_dim = 300
43
            encoding2_dim = 100
44
            middle_dim = typenum
45
            dims = [encoding1_dim, encoding2_dim, middle_dim]
46
            vae = VAE(data,dims)
47
            vae.autoencoder.summary()
48
            vae.train()
49
            encoded_factors = vae.predict(data)
50
            if not os.path.exists("{}/VAE_FCTAE_EM.txt".format(resultpath)):
51
                os.mknod("{}/VAE_FCTAE_EM.txt".format(resultpath))
52
            np.savetxt("{resultpath}/VAE_FCTAE_EM_{typenum}.txt".format(resultpath=resultpath,typenum=typenum), encoded_factors)
53
54
            # if not os.path.exists("AE_FCTAE_Kmeans.txt"):
55
            #     os.mknod("AE_FCTAE_Kmeans.txt")
56
            # fo = open("AE_FCTAE_Kmeans.txt", "a")
57
            # clf = KMeans(n_clusters=typenum)
58
            # t0 = time.time()
59
            # clf.fit(encoded_factors)  # 模型训练
60
            # km_batch = time.time() - t0  # 使用kmeans训练数据消耗的时间
61
62
            # print(datatype, typenum)
63
            # print("K-Means算法模型训练消耗时间:%.4fs" % km_batch)
64
65
            # # 效果评估
66
            # score_funcs = [
67
            #     metrics.adjusted_rand_score,  # ARI(调整兰德指数)
68
            #     metrics.v_measure_score,  # 均一性与完整性的加权平均
69
            #     metrics.adjusted_mutual_info_score,  # AMI(调整互信息)
70
            #     metrics.mutual_info_score,  # 互信息
71
            # ]
72
            # centers = clf.cluster_centers_
73
            # #print("centers:")
74
            # #print(centers)
75
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
76
            # labels = clf.labels_
77
            # print("labels:")
78
            # print(labels)
79
            # labels = list(np.int_(labels))
80
            # if not os.path.exists("{}/VAE_FCTAE_CL.txt".format(resultpath)):
81
            #     os.mknod("{}/VAE_FCTAE_CL.txt".format(resultpath))
82
            # np.savetxt("{}/VAE_FCTAE_CL.txt".format(resultpath), labels,fmt='%d')
83
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
84
            # # 2. 迭代对每个评估函数进行评估操作
85
            # for score_func in score_funcs:
86
            #     t0 = time.time()
87
            #     km_scores = score_func(groundtruth, labels)
88
            #     print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (score_func.__name__, km_scores, time.time() - t0))
89
            # t0 = time.time()
90
            # jaccard_score = jaccard_coefficient(groundtruth, labels)
91
            # print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (
92
            #     jaccard_coefficient.__name__, jaccard_score, time.time() - t0))
93
            # silhouetteScore = silhouette_score(encoded_factors, labels, metric='euclidean')
94
            # davies_bouldinScore = davies_bouldin_score(encoded_factors, labels)
95
            # print("silhouetteScore:", silhouetteScore)
96
            # print("davies_bouldinScore:", davies_bouldinScore)
97
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
98
99
100
101
102
103