a b/python-scripts/runSimulationsDAE.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from DAEclass import DAE
14
import os
15
16
if __name__ == '__main__':
17
    datatypes=["equal","heterogeneous"]
18
    typenums=[5,10,15]
19
    noise_factor=0.5
20
    for datatype in datatypes:
21
        for typenum in typenums:
22
            datapath='data/simulations/{}/{}'.format(datatype, typenum)
23
            resultpath='result/simulations/{}/{}'.format(datatype, typenum)
24
            groundtruth = np.loadtxt('{}/c.txt'.format(datapath))
25
            groundtruth = list(np.int_(groundtruth))
26
27
            omics1 = np.loadtxt('{}/o1.txt'.format(datapath))
28
            omics1 = np.transpose(omics1)
29
            omics1 = normalize(omics1, axis=0, norm='max')
30
31
            omics2 = np.loadtxt('{}/o2.txt'.format(datapath))
32
            omics2 = np.transpose(omics2)
33
            omics2 = normalize(omics2, axis=0, norm='max')
34
35
            omics3 = np.loadtxt('{}/o3.txt'.format(datapath))
36
            omics3 = np.transpose(omics3)
37
            omics3 = normalize(omics3, axis=0, norm='max')
38
39
            omics = np.concatenate((omics1, omics2, omics3), axis=1)
40
41
            data = omics
42
            input_dim = data.shape[1]
43
            encoding1_dim = 300
44
            encoding2_dim = 100
45
            middle_dim = typenum
46
            dims = [encoding1_dim, encoding2_dim, middle_dim]
47
            # ae = AE(data, dims)
48
            # ae.train()
49
            # encoded_factors = ae.predict(data)
50
51
            noise_factor = 0.1
52
            dae = DAE(data, dims, noise_factor)
53
            dae.autoencoder.summary()
54
            dae.train()
55
            encoded_factors = dae.predict(data)
56
57
            # if not os.path.exists("{}/DAE_FCTAE_EM.txt".format(resultpath)):
58
            #     os.mknod("{}/DAE_FCTAE_EM.txt".format(resultpath))
59
            np.savetxt("{resultpath}/DAE_FCTAE_EM_{typenum}.txt".format(resultpath=resultpath,typenum=typenum), encoded_factors)
60
61
            # if not os.path.exists("AE_FCTAE_Kmeans.txt"):
62
            #     os.mknod("AE_FCTAE_Kmeans.txt")
63
            # fo = open("AE_FCTAE_Kmeans.txt", "a")
64
            # clf = KMeans(n_clusters=typenum)
65
            # t0 = time.time()
66
            # clf.fit(encoded_factors)  # 模型训练
67
            # km_batch = time.time() - t0  # 使用kmeans训练数据消耗的时间
68
69
            # print(datatype, typenum)
70
            # print("K-Means算法模型训练消耗时间:%.4fs" % km_batch)
71
72
            # # 效果评估
73
            # score_funcs = [
74
            #     metrics.adjusted_rand_score,  # ARI(调整兰德指数)
75
            #     metrics.v_measure_score,  # 均一性与完整性的加权平均
76
            #     metrics.adjusted_mutual_info_score,  # AMI(调整互信息)
77
            #     metrics.mutual_info_score,  # 互信息
78
            # ]
79
80
            # centers = clf.cluster_centers_
81
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
82
            # #print("centers:")
83
            # #print(centers)
84
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
85
            # labels = clf.labels_
86
            # print("labels:")
87
            # print(labels)
88
            # labels = list(np.int_(labels))
89
            # if not os.path.exists("{}/DAE_FCTAE_CL.txt".format(resultpath)):
90
            #     os.mknod("{}/DAE_FCTAE_CL.txt".format(resultpath))
91
            # np.savetxt("{}/DAE_FCTAE_CL.txt".format(resultpath), labels,fmt='%d')
92
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
93
            # # 2. 迭代对每个评估函数进行评估操作
94
            # for score_func in score_funcs:
95
            #     t0 = time.time()
96
            #     km_scores = score_func(groundtruth, labels)
97
            #     print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (score_func.__name__, km_scores, time.time() - t0))
98
            # t0 = time.time()
99
            # jaccard_score = jaccard_coefficient(groundtruth, labels)
100
            # print("K-Means算法:%s评估函数计算结果值:%.5f;计算消耗时间:%0.3fs" % (
101
            #     jaccard_coefficient.__name__, jaccard_score, time.time() - t0))
102
            # silhouetteScore = silhouette_score(encoded_factors, labels, metric='euclidean')
103
            # davies_bouldinScore = davies_bouldin_score(encoded_factors, labels)
104
            # print("silhouetteScore:", silhouetteScore)
105
            # print("davies_bouldinScore:", davies_bouldinScore)
106
            # print("zlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzlyzly")
107
108
109
110
111
112