Switch to side-by-side view

--- a
+++ b/python-scripts/runSimulationsCNN.py
@@ -0,0 +1,462 @@
+import numpy as np
+from sklearn.preprocessing import normalize
+from keras.layers import Input, Dense,concatenate,Dropout,average
+from keras.models import Model
+from keras import backend as K
+from sklearn.metrics import roc_auc_score, f1_score, accuracy_score
+import numpy as np
+from sklearn.model_selection import StratifiedKFold
+from keras.layers import *
+from keras.models import Model
+import keras
+from sklearn.metrics import classification_report
+from tensorflow.compat.v1 import ConfigProto
+from tensorflow.compat.v1 import InteractiveSession
+config = ConfigProto()
+config.gpu_options.allow_growth = True
+session = InteractiveSession(config=config)
+
+# 训练三个神经网络
+def build_NN_model1(omics, class_num):
+    omics1 = omics[0]
+    omics2 = omics[1]
+    omics3 = omics[2]
+    input1_dim = omics1.shape[1]
+    input2_dim = omics2.shape[1]
+    input3_dim = omics3.shape[1]
+    # class_num = 4
+
+    # omics1
+    input_factor1 = Input(shape=(input1_dim,), name='omics1')
+    input_re1 = Reshape((-1, 1))(input_factor1)
+    omics1_cnn = Conv1D(8, (10), activation='relu')(input_re1)
+    omics1_cnn = MaxPool1D(2)(omics1_cnn)
+
+    flatten1 = Flatten()(omics1_cnn)
+
+    # omics2
+    input_factor2 = Input(shape=(input2_dim,), name='omics2')
+    input_re2 = Reshape((-1, 1))(input_factor2)
+    omics2_cnn = Conv1D(8, (10), activation='relu', name='omics2_cnn_1')(input_re2)
+    omics2_cnn = MaxPool1D(2)(omics2_cnn)
+
+    flatten2 = Flatten(name='flatten2')(omics2_cnn)
+
+    # omics3
+    input_factor3 = Input(shape=(input3_dim,), name='omics3')
+    input_re3 = Reshape((-1, 1))(input_factor3)
+    omics3_cnn = Conv1D(8, (10), activation='relu')(input_re3)
+    omics3_cnn = MaxPool1D(2)(omics3_cnn)
+
+    flatten3 = Flatten()(omics3_cnn)
+
+    mid_concat = concatenate([flatten1, flatten2, flatten3])
+    # classifier
+    nn_classifier = Dense(100, activation='relu')(mid_concat)
+    nn_classifier = Dropout(0.1)(nn_classifier)
+    nn_classifier = Dense(50, activation='relu')(nn_classifier)
+    nn_classifier = Dropout(0.1)(nn_classifier)
+    # nn_classifier = Dense(50, activation='relu')(nn_classifier)
+    # nn_classifier = Dropout(0.1)(nn_classifier)
+    nn_classifier = Dense(10, activation='relu')(nn_classifier)
+    # nn_classifier = Dropout(0.1)(nn_classifier)
+    nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier)
+    my_metrics = {
+        'classifier': ['acc']
+    }
+    my_loss = {
+        'classifier': 'categorical_crossentropy', \
+        }
+    adam = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
+    zlyNN = Model(inputs=[input_factor1, input_factor2, input_factor3], outputs=nn_classifier)
+    zlyNN.compile(optimizer=adam, loss=my_loss, metrics=my_metrics)
+    return zlyNN
+
+
+def build_NN_model2(omics, class_num):
+    input_dim = omics.shape[1]
+
+    # class_num = 5
+
+    # omics1
+    input_factor1 = Input(shape=(input_dim,), name='omics')
+    input_re = Reshape((-1, 1))(input_factor1)
+    omics1_cnn = Conv1D(16, (10), activation='relu')(input_re)
+    omics1_cnn = MaxPool1D(10)(omics1_cnn)
+    omics1_cnn = Conv1D(8, (5), activation='relu')(omics1_cnn)
+    omics1_cnn = MaxPool1D(2)(omics1_cnn)
+    flatten = Flatten()(omics1_cnn)
+    # NN
+    # omics1_nn = Dense(500, activation='relu')(input_factor1)
+    # omics1_nn = Dropout(0.1)(omics1_nn)
+    # omics1_nn = Dense(100, activation='relu')(omics1_nn)
+    # omics1_nn = Dropout(0.1)(omics1_nn)
+
+    nn_classifier = Dense(50, activation='relu')(flatten)
+    # nn_classifier = Dropout(0.1)(nn_classifier)
+    if class_num == 2:
+        nn_classifier = Dense(1, activation='sigmoid', name='classifier')(nn_classifier)
+    else:
+        nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier)
+    my_metrics_multi = {
+        'classifier': ['acc']
+    }
+    my_loss_multi = {
+        'classifier': 'categorical_crossentropy', \
+        }
+    my_metrics_bi = {
+        'classifier': ['acc']
+    }
+    my_loss_bi = {
+        'classifier': 'binary_crossentropy', \
+        }
+    # compile autoencoder
+    # self.autoencoder.compile(optimizer='adam', loss='mse')
+    zlyNN = Model(inputs=[input_factor1], outputs=nn_classifier)
+    if class_num == 2:
+        zlyNN.compile(optimizer='adam', loss=my_loss_bi, metrics=my_metrics_bi)
+    else:
+        zlyNN.compile(optimizer='adam', loss=my_loss_multi, metrics=my_metrics_multi)
+    return zlyNN
+
+if __name__ == '__main__':
+    # files = ['breast2']
+    # # files = ['gbm']
+    # for f in files:
+    #     datapath='./data/cancer_d2d/{f}'.format(f=f)
+    #     omics1 = np.loadtxt('{}/after_log_exp.txt'.format(datapath),str)
+    #     omics1 = np.delete(omics1, 0, axis=1)
+    #     #omics1 = np.transpose(omics1)
+    #     omics1 = omics1.astype(np.float)
+    #     omics1 = normalize(omics1, axis=0, norm='max')
+    #     print(omics1.shape)
+    #     omics2 = np.loadtxt('{}/after_log_mirna.txt'.format(datapath),str)
+    #     omics2= np.delete(omics2, 0, axis=1)
+    #     #omics2 = np.transpose(omics2)
+    #     omics2 = omics2.astype(np.float)
+    #     omics2 = normalize(omics2, axis=0, norm='max')
+    #     print(omics2.shape)
+    #     omics3 = np.loadtxt('{}/after_methy.txt'.format(datapath),str)
+    #     omics3= np.delete(omics3,0,axis=1)
+    #     #omics3 = np.transpose(omics3)
+    #     omics3 = omics3.astype(np.float)
+    #     omics3 = normalize(omics3, axis=0, norm='max')
+    #     print(omics3.shape)
+    #     labels = np.loadtxt('{datapath}/after_labels.txt'.format(datapath=datapath), str)
+    #     labels = np.delete(labels, 0, axis=1)
+    #     labels = labels.astype(np.int)
+    #     labels = np.squeeze(labels,axis=1)
+    #     # k折交叉验证
+    #     all_acc = []
+    #     all_f1_macro = []
+    #     all_f1_weighted = []
+    #     all_auc_macro = []
+    #     all_auc_weighted = []
+    #     #omics = np.loadtxt('./result/nmf/mf_em.txt')
+    #     omics = np.concatenate((omics1, omics2, omics3), axis=1)
+    #     #labels = np.loadtxt('./data/BRCA/labels_all.csv', delimiter=',')
+    #     # data=np.concatenate([])
+    #     kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
+    #     for train_ix, test_ix in kfold.split(omics, labels):
+    #         # select rows
+    #         train_X, test_X = omics[train_ix], omics[test_ix]
+    #         train_y, test_y = labels[train_ix], labels[test_ix]
+    #         # summarize train and test composition
+    #         unique, count = np.unique(train_y, return_counts=True)
+    #         train_data_count = dict(zip(unique, count))
+    #         print('train:' + str(train_data_count))
+    #         unique, count = np.unique(test_y, return_counts=True)
+    #         test_data_count = dict(zip(unique, count))
+    #         print('test:' + str(test_data_count))
+
+    #         # 多分类的输出
+    #         train_y = list(np.int_(train_y))
+    #         # groundtruth = np.int_(groundtruth)
+    #         y = []
+    #         num = len(train_y)
+    #         for i in range(num):
+    #             tmp = np.zeros(4, dtype='uint8')
+    #             tmp[train_y[i]] = 1
+    #             y.append(tmp)
+    #         train_y = np.array(y)
+
+    #         test_y = list(np.int_(test_y))
+    #         # groundtruth = np.int_(groundtruth)
+    #         y = []
+    #         num = len(test_y)
+    #         for i in range(num):
+    #             tmp = np.zeros(4, dtype='uint8')
+    #             tmp[test_y[i]] = 1
+    #             y.append(tmp)
+    #         test_y = np.array(y)
+
+    #         model = build_NN_model2(omics, 4)
+    #         history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=8, shuffle=True,
+    #                             validation_data=(test_X, test_y))
+    #         y_true = []
+    #         for i in range(len(test_y)):
+    #             y_true.append(np.argmax(test_y[i]))
+    #         predictions = model.predict(test_X)
+    #         y_pred = []
+    #         for i in range(len(predictions)):
+    #             y_pred.append(np.argmax(predictions[i]))
+    #         acc = accuracy_score(y_true, y_pred)
+    #         f1_macro = f1_score(y_true, y_pred, average='macro')
+    #         # f1_micro=f1_score(y_true, y_pred, average='micro')
+    #         f1_weighted = f1_score(y_true, y_pred, average='weighted')
+    #         auc_macro = roc_auc_score(y_true, predictions, multi_class='ovr', average='macro')
+    #         auc_weighted = roc_auc_score(y_true, predictions, multi_class='ovr', average='weighted')
+    #         all_acc.append(acc)
+    #         all_f1_macro.append(f1_macro)
+    #         all_f1_weighted.append(f1_weighted)
+    #         all_auc_macro.append(auc_macro)
+    #         all_auc_weighted.append(auc_weighted)
+
+    #         print(classification_report(y_true, y_pred))
+    #         print(acc, f1_macro, f1_weighted, auc_macro, auc_weighted)
+    #         # print_precison_recall_f1(y_true, y_pred)
+    #     print('caicai' * 20)
+    #     print(
+    #         'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\nauc_macro:{all_auc_macro}\nauc_weighted:{all_auc_weighted}'. \
+    #         format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted,
+    #                all_auc_macro=all_auc_macro, all_auc_weighted=all_auc_weighted))
+    #     avg_acc = np.mean(all_acc)
+    #     avg_f1_macro = np.mean(all_f1_macro)
+    #     avg_f1_weighted = np.mean(all_f1_weighted)
+    #     avg_auc_macro = np.mean(all_auc_macro)
+    #     avg_auc_weighted = np.mean(all_auc_weighted)
+    #     print(
+    #         'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\nauc_macro:{avg_auc_macro}\nauc_weighted:{avg_auc_weighted}'. \
+    #         format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted,
+    #                avg_auc_macro=avg_auc_macro, avg_auc_weighted=avg_auc_weighted))
+
+
+
+    
+    # datatypes=["equal","heterogeneous"]
+    # typenums=[5,10,15]
+    # noise_factor=0.5
+    # savepath='./result/simulations/lfcnn_res1.txt'
+    # with open(savepath, 'w') as f2:
+    #     for datatype in datatypes:
+    #         f2.write(datatype+'\n')
+    #         for typenum in typenums:
+    #             f2.write(str(typenum)+'\n')
+    #             datapath='data/simulations/{}/{}'.format(datatype, typenum)
+    #             resultpath='result/simulations/{}/{}'.format(datatype, typenum)
+    #             labels = np.loadtxt('{}/c.txt'.format(datapath))
+    #             # groundtruth = list(np.int_(groundtruth))
+    #
+    #             omics1 = np.loadtxt('{}/o1.txt'.format(datapath))
+    #             omics1 = np.transpose(omics1)
+    #             omics1 = normalize(omics1, axis=0, norm='max')
+    #
+    #             omics2 = np.loadtxt('{}/o2.txt'.format(datapath))
+    #             omics2 = np.transpose(omics2)
+    #             omics2 = normalize(omics2, axis=0, norm='max')
+    #
+    #             omics3 = np.loadtxt('{}/o3.txt'.format(datapath))
+    #             omics3 = np.transpose(omics3)
+    #             omics3 = normalize(omics3, axis=0, norm='max')
+    #
+    #             omics = np.concatenate((omics1, omics2, omics3), axis=1)
+    #
+    #             # k折交叉验证
+    #             all_acc = []
+    #             all_f1_macro = []
+    #             all_f1_weighted = []
+    #
+    #
+    #             kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
+    #             for train_ix, test_ix in kfold.split(omics, labels):
+    #
+    #                 omics_tobuild=[omics1,omics2,omics3]
+    #                 train_X_1=omics1[train_ix]
+    #                 train_X_2=omics2[train_ix]
+    #                 train_X_3=omics3[train_ix]
+    #
+    #                 test_X_1=omics1[test_ix]
+    #                 test_X_2=omics2[test_ix]
+    #                 test_X_3=omics3[test_ix]
+    #                 # select rows
+    #                 train_X, test_X = [train_X_1,train_X_2,train_X_3],[test_X_1,test_X_2,test_X_3]
+    #                 #train_X, test_X = (train_X_1,train_X_2,train_X_3),(test_X_1,test_X_2,test_X_3)
+    #                 train_y, test_y = labels[train_ix], labels[test_ix]
+    #                 # summarize train and test composition
+    #                 unique, count = np.unique(train_y, return_counts=True)
+    #                 train_data_count = dict(zip(unique, count))
+    #                 print('train:' + str(train_data_count))
+    #                 unique, count = np.unique(test_y, return_counts=True)
+    #                 test_data_count = dict(zip(unique, count))
+    #                 print('test:' + str(test_data_count))
+    #
+    #                 class_num=typenum
+    #                 # 多分类的输出
+    #                 train_y = list(np.int_(train_y))
+    #                 # groundtruth = np.int_(groundtruth)
+    #                 y = []
+    #                 num = len(train_y)
+    #                 for i in range(num):
+    #                     tmp = np.zeros(class_num, dtype='uint8')
+    #                     tmp[train_y[i]] = 1
+    #                     y.append(tmp)
+    #                 train_y = np.array(y)
+    #
+    #                 test_y = list(np.int_(test_y))
+    #                 # groundtruth = np.int_(groundtruth)
+    #                 y = []
+    #                 num = len(test_y)
+    #                 for i in range(num):
+    #                     tmp = np.zeros(class_num, dtype='uint8')
+    #                     tmp[test_y[i]] = 1
+    #                     y.append(tmp)
+    #                 test_y = np.array(y)
+    #
+    #                 model = build_NN_model1(omics_tobuild,class_num)
+    #                 model.summary()
+    #                 history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=16, shuffle=True,validation_data=(test_X, test_y))
+    #                 y_true = []
+    #                 for i in range(len(test_y)):
+    #                     y_true.append(np.argmax(test_y[i]))
+    #                 predictions = model.predict(test_X)
+    #                 y_pred = []
+    #                 for i in range(len(predictions)):
+    #                     y_pred.append(np.argmax(predictions[i]))
+    #                 acc = accuracy_score(y_true, y_pred)
+    #                 f1_macro = f1_score(y_true, y_pred, average='macro')
+    #                 # f1_micro=f1_score(y_true, y_pred, average='micro')
+    #                 f1_weighted = f1_score(y_true, y_pred, average='weighted')
+    #                 all_acc.append(acc)
+    #                 all_f1_macro.append(f1_macro)
+    #                 all_f1_weighted.append(f1_weighted)
+    #
+    #
+    #                 print(classification_report(y_true, y_pred))
+    #                 break
+    #                 # print_precison_recall_f1(y_true, y_pred)
+    #             print('caicai' * 20)
+    #             print(
+    #                 'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\n'. \
+    #                 format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted))
+    #             avg_acc = np.mean(all_acc)
+    #             avg_f1_macro = np.mean(all_f1_macro)
+    #             avg_f1_weighted = np.mean(all_f1_weighted)
+    #
+    #             print(
+    #                 'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \
+    #                 format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted))
+    #             f2.write('acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \
+    #                 format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted))
+    #         f2.write('*'*20)
+
+
+    datatypes=["equal","heterogeneous"]
+    typenums=[5,10,15]
+    noise_factor=0.5
+    savepath='./result/simulations/efcnn_res1.txt'
+    with open(savepath, 'w') as f2:
+        for datatype in datatypes:
+            f2.write(datatype+'\n')
+            for typenum in typenums:
+                f2.write(str(typenum)+'\n')
+                datapath='data/simulations/{}/{}'.format(datatype, typenum)
+                resultpath='result/simulations/{}/{}'.format(datatype, typenum)
+                labels = np.loadtxt('{}/c.txt'.format(datapath))
+                # groundtruth = list(np.int_(groundtruth))
+
+                omics1 = np.loadtxt('{}/o1.txt'.format(datapath))
+                omics1 = np.transpose(omics1)
+                omics1 = normalize(omics1, axis=0, norm='max')
+
+                omics2 = np.loadtxt('{}/o2.txt'.format(datapath))
+                omics2 = np.transpose(omics2)
+                omics2 = normalize(omics2, axis=0, norm='max')
+
+                omics3 = np.loadtxt('{}/o3.txt'.format(datapath))
+                omics3 = np.transpose(omics3)
+                omics3 = normalize(omics3, axis=0, norm='max')
+
+                omics = np.concatenate((omics1, omics2, omics3), axis=1)
+
+                # k折交叉验证
+                all_acc = []
+                all_f1_macro = []
+                all_f1_weighted = []
+
+                
+                kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
+                for train_ix, test_ix in kfold.split(omics, labels):
+                    
+
+                    train_X, test_X = omics[train_ix], omics[test_ix]
+                    train_y, test_y = labels[train_ix], labels[test_ix]
+                    # summarize train and test composition
+                    unique, count = np.unique(train_y, return_counts=True)
+                    train_data_count = dict(zip(unique, count))
+                    print('train:' + str(train_data_count))
+                    unique, count = np.unique(test_y, return_counts=True)
+                    test_data_count = dict(zip(unique, count))
+                    print('test:' + str(test_data_count))
+
+                    class_num=typenum
+                    # 多分类的输出
+                    train_y = list(np.int_(train_y))
+                    # groundtruth = np.int_(groundtruth)
+                    y = []
+                    num = len(train_y)
+                    for i in range(num):
+                        tmp = np.zeros(class_num, dtype='uint8')
+                        tmp[train_y[i]] = 1
+                        y.append(tmp)
+                    train_y = np.array(y)
+
+                    test_y = list(np.int_(test_y))
+                    # groundtruth = np.int_(groundtruth)
+                    y = []
+                    num = len(test_y)
+                    for i in range(num):
+                        tmp = np.zeros(class_num, dtype='uint8')
+                        tmp[test_y[i]] = 1
+                        y.append(tmp)
+                    test_y = np.array(y)
+
+                    model = build_NN_model2(omics, class_num)
+                    history = model.fit(train_X, train_y, epochs=20, verbose=2, batch_size=8, shuffle=True,
+                                        validation_data=(test_X, test_y))
+                    y_true = []
+                    for i in range(len(test_y)):
+                        y_true.append(np.argmax(test_y[i]))
+                    predictions = model.predict(test_X)
+                    y_pred = []
+                    for i in range(len(predictions)):
+                        y_pred.append(np.argmax(predictions[i]))
+                    acc = accuracy_score(y_true, y_pred)
+                    f1_macro = f1_score(y_true, y_pred, average='macro')
+                    # f1_micro=f1_score(y_true, y_pred, average='micro')
+                    f1_weighted = f1_score(y_true, y_pred, average='weighted')
+                    all_acc.append(acc)
+                    all_f1_macro.append(f1_macro)
+                    all_f1_weighted.append(f1_weighted)
+
+
+                    print(classification_report(y_true, y_pred))
+                    break
+                    # print_precison_recall_f1(y_true, y_pred)
+                print('caicai' * 20)
+                print(
+                    'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\n'. \
+                    format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted))
+                avg_acc = np.mean(all_acc)
+                avg_f1_macro = np.mean(all_f1_macro)
+                avg_f1_weighted = np.mean(all_f1_weighted)
+
+                print(
+                    'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \
+                    format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted))
+                f2.write('acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\n'. \
+                    format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted))
+            f2.write('*'*20)
+
+
+    
+