Switch to unified view

a b/python-scripts/runCancerSVAE2.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from SVAEclass import VAE
14
import os
15
from keras import backend as K
16
17
18
def get_EM(datapath,resultpath):
19
    omics1 = np.loadtxt('{}/log_exp_omics.txt'.format(datapath))
20
    omics1 = np.transpose(omics1)
21
    omics1 = normalize(omics1, axis=0, norm='max')
22
    print(omics1.shape)
23
    omics2 = np.loadtxt('{}/log_mirna_omics.txt'.format(datapath))
24
    omics2 = np.transpose(omics2)
25
    omics2 = normalize(omics2, axis=0, norm='max')
26
    print(omics2.shape)
27
    omics3 = np.loadtxt('{}/methy_omics.txt'.format(datapath))
28
    omics3 = np.transpose(omics3)
29
    omics3 = normalize(omics3, axis=0, norm='max')
30
    print(omics3.shape)
31
    omics = np.concatenate((omics1, omics2, omics3), axis=1)
32
    print(omics.shape)
33
34
35
36
    encoding1_dim1 = 1000
37
    encoding2_dim1 = 100
38
    middle_dim1 = 4
39
    dims1 = [encoding1_dim1, encoding2_dim1, middle_dim1]
40
    ae1 = VAE(omics1, dims1)
41
    ae1.train()
42
    ae1.autoencoder.summary()
43
    encoded_factor1 = ae1.predict(omics1)
44
45
    encoding1_dim2 = 500
46
    encoding2_dim2 = 50
47
    middle_dim2 = 2
48
    dims2 = [encoding1_dim2, encoding2_dim2, middle_dim2]
49
    ae2 = VAE(omics2, dims2)
50
    ae2.train()
51
    ae2.autoencoder.summary()
52
    encoded_factor2 = ae2.predict(omics2)
53
54
    encoding1_dim3 = 1000
55
    encoding2_dim3 = 100
56
    middle_dim3 = 4
57
    dims3 = [encoding1_dim3, encoding2_dim3, middle_dim3]
58
    ae3 = VAE(omics3, dims3)
59
    ae3.autoencoder.summary()
60
    ae3.train()
61
    encoded_factor3 = ae3.predict(omics3)
62
63
    encoded_factors = np.concatenate((encoded_factor1, encoded_factor2, encoded_factor3), axis=1)
64
    if not os.path.exists("{}/SVAE_FAETC_EM.txt".format(resultpath)):
65
        os.mknod("{}/SVAE_FAETC_EM.txt".format(resultpath))
66
    np.savetxt("{}/SVAE_FAETC_EM.txt".format(resultpath), encoded_factors)
67
    K.clear_session()
68
69
70
if __name__ == '__main__':
71
    data_dir_list = []
72
    result_dir_list = []
73
    data_path = r"data/cancer"
74
    result_path = r"result/cancer"
75
    dir_or_files = os.listdir(data_path)
76
    for dir_file in dir_or_files:
77
        # 获取目录或者文件的路径
78
        data_dir_file_path = os.path.join(data_path, dir_file)
79
        result_dir_file_path = os.path.join(result_path, dir_file)
80
        # 判断该路径为文件还是路径
81
        if os.path.isdir(data_dir_file_path):
82
            data_dir_list.append(data_dir_file_path)
83
            if not os.path.exists(result_dir_file_path):
84
                os.makedirs(result_dir_file_path)
85
            result_dir_list.append(result_dir_file_path)
86
    #print(data_dir_list)
87
    #print(result_dir_list)
88
    # data_dir_list=['data/cancer/breast', 'data/cancer/gbm', 'data/cancer/ovarian', 'data/cancer/sarcoma', 'data/cancer/lung', 'data/cancer/liver']
89
    # result_dir_list=['result/cancer/breast', 'result/cancer/gbm', 'result/cancer/ovarian', 'result/cancer/sarcoma', 'result/cancer/lung', 'result/cancer/liver']
90
91
    for datapath,resultpath in zip(data_dir_list,result_dir_list):
92
        get_EM(datapath, resultpath)
93
    # datapath='data/cancer/gbm'
94
    # resultpath='result/cancer/gbm'
95
    get_EM(datapath, resultpath)
96
97
98
99
100
101
102
103
104