Switch to unified view

a b/python-scripts/runCancerAE.py
1
from keras.layers import Input, Dense
2
from keras.models import Model
3
import numpy as np
4
import pandas as pd
5
import matplotlib.pyplot as plt
6
from sklearn.cluster import KMeans
7
from sklearn.cluster import k_means
8
from sklearn.metrics import silhouette_score, davies_bouldin_score
9
from sklearn.preprocessing import normalize
10
import time
11
from sklearn import metrics
12
from myUtils import *
13
from AEclass import AE
14
import os
15
16
if __name__ == '__main__':
17
    data_dir_list = []
18
    result_dir_list = []
19
    data_path = r"data/cancer"
20
    result_path = r"result/cancer"
21
    dir_or_files = os.listdir(data_path)
22
    for dir_file in dir_or_files:
23
        # 获取目录或者文件的路径
24
        data_dir_file_path = os.path.join(data_path, dir_file)
25
        result_dir_file_path = os.path.join(result_path, dir_file)
26
        # 判断该路径为文件还是路径
27
        if os.path.isdir(data_dir_file_path):
28
            data_dir_list.append(data_dir_file_path)
29
            if not os.path.exists(result_dir_file_path):
30
                os.makedirs(result_dir_file_path)
31
            result_dir_list.append(result_dir_file_path)
32
    #print(data_dir_list)
33
    #print(result_dir_list)
34
    #data_dir_list=['data/cancer/breast', 'data/cancer/kidney', 'data/cancer/lung', 'data/cancer/liver']
35
    #result_dir_list=['result/cancer/breast', 'result/cancer/kidney', 'result/cancer/lung', 'result/cancer/liver']
36
37
    for datapath,resultpath in zip(data_dir_list,result_dir_list):
38
        print(datapath)
39
        omics1 = np.loadtxt('{}/log_exp_omics.txt'.format(datapath))
40
        omics1 = np.transpose(omics1)
41
        omics1 = normalize(omics1, axis=0, norm='max')
42
        print(omics1.shape)
43
        omics2 = np.loadtxt('{}/log_mirna_omics.txt'.format(datapath))
44
        omics2 = np.transpose(omics2)
45
        omics2 = normalize(omics2, axis=0, norm='max')
46
        print(omics2.shape)
47
        omics3 = np.loadtxt('{}/methy_omics.txt'.format(datapath))
48
        omics3 = np.transpose(omics3)
49
        omics3 = normalize(omics3, axis=0, norm='max')
50
        print(omics3.shape)
51
        omics = np.concatenate((omics1, omics2, omics3), axis=1)
52
        print(omics.shape)
53
        print('*'*100)
54
        # data = omics
55
        # input_dim = data.shape[1]
56
        # encoding1_dim = 3000
57
        # encoding2_dim = 300
58
        # middle_dim = 10
59
        # dims = [encoding1_dim, encoding2_dim, middle_dim]
60
        # ae = AE(data, dims)
61
        # #ae.autoencoder.summary()
62
        # ae.train()
63
        # encoded_factors = ae.predict(data)
64
        # if not os.path.exists("{}/AE_FCTAE_EM.txt".format(resultpath)):
65
        #     os.mknod("{}/AE_FCTAE_EM.txt".format(resultpath))
66
        # np.savetxt("{}/AE_FCTAE_EM.txt".format(resultpath), encoded_factors)
67
68
69
70
71
72