--- a +++ b/python-scripts/runCancerAE.py @@ -0,0 +1,72 @@ +from keras.layers import Input, Dense +from keras.models import Model +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from sklearn.cluster import KMeans +from sklearn.cluster import k_means +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import normalize +import time +from sklearn import metrics +from myUtils import * +from AEclass import AE +import os + +if __name__ == '__main__': + data_dir_list = [] + result_dir_list = [] + data_path = r"data/cancer" + result_path = r"result/cancer" + dir_or_files = os.listdir(data_path) + for dir_file in dir_or_files: + # 获取目录或者文件的路径 + data_dir_file_path = os.path.join(data_path, dir_file) + result_dir_file_path = os.path.join(result_path, dir_file) + # 判断该路径为文件还是路径 + if os.path.isdir(data_dir_file_path): + data_dir_list.append(data_dir_file_path) + if not os.path.exists(result_dir_file_path): + os.makedirs(result_dir_file_path) + result_dir_list.append(result_dir_file_path) + #print(data_dir_list) + #print(result_dir_list) + #data_dir_list=['data/cancer/breast', 'data/cancer/kidney', 'data/cancer/lung', 'data/cancer/liver'] + #result_dir_list=['result/cancer/breast', 'result/cancer/kidney', 'result/cancer/lung', 'result/cancer/liver'] + + for datapath,resultpath in zip(data_dir_list,result_dir_list): + print(datapath) + omics1 = np.loadtxt('{}/log_exp_omics.txt'.format(datapath)) + omics1 = np.transpose(omics1) + omics1 = normalize(omics1, axis=0, norm='max') + print(omics1.shape) + omics2 = np.loadtxt('{}/log_mirna_omics.txt'.format(datapath)) + omics2 = np.transpose(omics2) + omics2 = normalize(omics2, axis=0, norm='max') + print(omics2.shape) + omics3 = np.loadtxt('{}/methy_omics.txt'.format(datapath)) + omics3 = np.transpose(omics3) + omics3 = normalize(omics3, axis=0, norm='max') + print(omics3.shape) + omics = np.concatenate((omics1, omics2, omics3), axis=1) + print(omics.shape) + print('*'*100) + # data = omics + # input_dim = data.shape[1] + # encoding1_dim = 3000 + # encoding2_dim = 300 + # middle_dim = 10 + # dims = [encoding1_dim, encoding2_dim, middle_dim] + # ae = AE(data, dims) + # #ae.autoencoder.summary() + # ae.train() + # encoded_factors = ae.predict(data) + # if not os.path.exists("{}/AE_FCTAE_EM.txt".format(resultpath)): + # os.mknod("{}/AE_FCTAE_EM.txt".format(resultpath)) + # np.savetxt("{}/AE_FCTAE_EM.txt".format(resultpath), encoded_factors) + + + + + +