import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
with open(r"C:\pypro\brcatest_go.csv", 'r') as f:
data = pd.read_csv(f)
print(data.shape)
tcga_input=np.transpose(data)
print(tcga_input.shape)
learning_rate = 0.01
training_epochs = 10
batch_size = 50
display_step = 1
examples_to_show = 10
dropout=0.1
n_input = 60779
scale = 0.0001
# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])
n_hidden_1 = 500 #
n_hidden_2 = 200 #
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}
def encoder(x):
layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2
def decoder(x):
layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2
##################################################################
fc_1 = tf.layers.dense(inputs=X, units=n_hidden_1,
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=scale))
fc_1_out = tf.nn.tanh(fc_1)
fc_1_dropout = tf.layers.dropout(inputs=fc_1_out, rate=dropout)
fc_2 = tf.layers.dense(inputs = fc_1_dropout, units = n_hidden_2, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale))
fc_2_out = tf.nn.tanh(fc_2)
encoder_op = tf.layers.dropout(inputs=fc_2_out, rate=dropout)
fc_3 = tf.layers.dense(inputs = encoder_op, units = n_hidden_1, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale))
fc_3_out = tf.nn.tanh(fc_3)
fc_3_dropout = tf.layers.dropout(inputs=fc_3_out, rate=dropout)
decoder_op = tf.layers.dense(inputs=fc_3_dropout, units=n_input)
##################################################################
y_pred = decoder_op
y_true = X
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))#+lossL
l2_loss = tf.losses.get_regularization_loss()
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost+l2_loss)
with tf.Session() as sess:
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(len(tcga_input)/batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
# tch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
batch_xs = tcga_input[((i)*batch_size):((i+1)*batch_size)]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
if epoch == training_epochs - 1:
fea_output = sess.run([encoder_op], feed_dict={X: tcga_input})
# print(fea_output)
print(np.array(fea_output).shape)
np.savetxt(r'C:\pypro\fea.csv', np.array(fea_output[0]), delimiter=',')
print("Optimization Finished!")