import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
with open(r"simulation.csv", 'r') as f:
data = pd.read_csv(f)
#print(data.shape)
tcga_input=np.transpose(data)
print(tcga_input.shape[1])
length1 = tcga_input.shape[1]
learning_rate = 0.0001
training_epochs = 100
batch_size = 125
display_step = 2
examples_to_show = 10
n_input = tcga_input.shape[1]
X = tf.placeholder("float", [None, n_input])
n_hidden_1 = 200
n_hidden_2 = 50
n_hidden_3 = 2
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b3': tf.Variable(tf.random_normal([n_input])),
}
def encoder(x):
layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.tanh(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
return layer_3
def decoder(x):
layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.tanh(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
return layer_3
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
y_pred = decoder_op
y_true = X
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
with tf.Session() as sess:
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(len(tcga_input)/batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs = tcga_input[((i) * batch_size):((i + 1) * batch_size)] + 0.3 * np.random.rand(length1) #added nosie
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
if epoch == training_epochs - 1:
fea_output = sess.run([encoder_op], feed_dict={X: tcga_input})
# print(fea_output)
print(np.array(fea_output).shape)
np.savetxt(r'fea.csv', np.array(fea_output[0]), delimiter=',')
dd = np.array(fea_output[0])
print("Optimization Finished!")
print(dd.shape)
clf = KMeans(n_clusters=2)
clf.fit(dd)
centers = clf.cluster_centers_
labels = clf.labels_
silhouetteScore = silhouette_score(dd, labels, metric='euclidean')
print(centers)
print(silhouetteScore)
# encode_decode = sess.run(
# y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# f, a = plt.subplots(2, 10, figsize=(10, 2)) #return fig,axes
# for i in range(examples_to_show):
# a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
# a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
# plt.show()