Diff of /autoencoder_DCAP.py [000000] .. [a50134]

Switch to unified view

a b/autoencoder_DCAP.py
1
2
3
import tensorflow as tf
4
import numpy as np
5
import matplotlib.pyplot as plt
6
import pandas as pd
7
with open(r"C:\pypro\brcatest_go.csv", 'r') as f:
8
    data = pd.read_csv(f)
9
10
print(data.shape)
11
tcga_input=np.transpose(data)
12
print(tcga_input.shape)
13
14
learning_rate = 0.01
15
training_epochs = 10
16
batch_size = 50
17
display_step = 1
18
examples_to_show = 10
19
20
dropout=0.1
21
n_input = 60779
22
scale = 0.0001
23
# tf Graph input (only pictures)
24
X = tf.placeholder("float", [None, n_input])
25
26
27
n_hidden_1 = 500 # 
28
n_hidden_2 = 200 # 
29
30
weights = {
31
    'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
32
    'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
33
    'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
34
    'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
35
}
36
biases = {
37
    'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
38
    'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
39
    'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
40
    'decoder_b2': tf.Variable(tf.random_normal([n_input])),
41
}
42
43
44
def encoder(x):
45
    layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['encoder_h1']),
46
                                   biases['encoder_b1']))
47
    layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
48
                                   biases['encoder_b2']))
49
    return layer_2
50
51
52
53
def decoder(x):
54
    layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['decoder_h1']),
55
                                   biases['decoder_b1']))
56
    layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
57
                                   biases['decoder_b2']))
58
    return layer_2
59
60
61
##################################################################
62
63
fc_1 = tf.layers.dense(inputs=X, units=n_hidden_1,
64
                       kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=scale))
65
fc_1_out = tf.nn.tanh(fc_1)
66
fc_1_dropout = tf.layers.dropout(inputs=fc_1_out, rate=dropout)
67
68
fc_2 = tf.layers.dense(inputs = fc_1_dropout, units = n_hidden_2, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale))
69
fc_2_out = tf.nn.tanh(fc_2)
70
encoder_op = tf.layers.dropout(inputs=fc_2_out, rate=dropout)
71
72
fc_3 = tf.layers.dense(inputs = encoder_op, units = n_hidden_1, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale))
73
fc_3_out = tf.nn.tanh(fc_3)
74
fc_3_dropout = tf.layers.dropout(inputs=fc_3_out, rate=dropout)
75
76
decoder_op = tf.layers.dense(inputs=fc_3_dropout, units=n_input)
77
##################################################################
78
79
80
y_pred = decoder_op
81
y_true = X
82
83
84
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))#+lossL 
85
l2_loss = tf.losses.get_regularization_loss()
86
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost+l2_loss)
87
88
with tf.Session() as sess:
89
    # tf.initialize_all_variables() no long valid from
90
    # 2017-03-02 if using tensorflow >= 0.12
91
    if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
92
        init = tf.initialize_all_variables()
93
    else:
94
        init = tf.global_variables_initializer()
95
    sess.run(init)
96
  
97
    total_batch = int(len(tcga_input)/batch_size) 
98
    for epoch in range(training_epochs):
99
        for i in range(total_batch):
100
            # tch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0
101
            batch_xs = tcga_input[((i)*batch_size):((i+1)*batch_size)]
102
            # Run optimization op (backprop) and cost op (to get loss value)
103
            _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
104
        if epoch % display_step == 0:
105
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
106
        if epoch == training_epochs - 1:
107
                fea_output = sess.run([encoder_op], feed_dict={X: tcga_input})
108
                # print(fea_output)
109
                print(np.array(fea_output).shape)
110
                np.savetxt(r'C:\pypro\fea.csv', np.array(fea_output[0]), delimiter=',')
111
    print("Optimization Finished!")
112
113