--- a +++ b/autoencoder_DCAP.py @@ -0,0 +1,113 @@ + + +import tensorflow as tf +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +with open(r"C:\pypro\brcatest_go.csv", 'r') as f: + data = pd.read_csv(f) + +print(data.shape) +tcga_input=np.transpose(data) +print(tcga_input.shape) + +learning_rate = 0.01 +training_epochs = 10 +batch_size = 50 +display_step = 1 +examples_to_show = 10 + +dropout=0.1 +n_input = 60779 +scale = 0.0001 +# tf Graph input (only pictures) +X = tf.placeholder("float", [None, n_input]) + + +n_hidden_1 = 500 # +n_hidden_2 = 200 # + +weights = { + 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), + 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), + 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), + 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), +} +biases = { + 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), + 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), + 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), + 'decoder_b2': tf.Variable(tf.random_normal([n_input])), +} + + +def encoder(x): + layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['encoder_h1']), + biases['encoder_b1'])) + layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['encoder_h2']), + biases['encoder_b2'])) + return layer_2 + + + +def decoder(x): + layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['decoder_h1']), + biases['decoder_b1'])) + layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['decoder_h2']), + biases['decoder_b2'])) + return layer_2 + + +################################################################## + +fc_1 = tf.layers.dense(inputs=X, units=n_hidden_1, + kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=scale)) +fc_1_out = tf.nn.tanh(fc_1) +fc_1_dropout = tf.layers.dropout(inputs=fc_1_out, rate=dropout) + +fc_2 = tf.layers.dense(inputs = fc_1_dropout, units = n_hidden_2, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale)) +fc_2_out = tf.nn.tanh(fc_2) +encoder_op = tf.layers.dropout(inputs=fc_2_out, rate=dropout) + +fc_3 = tf.layers.dense(inputs = encoder_op, units = n_hidden_1, kernel_regularizer= tf.contrib.layers.l2_regularizer(scale=scale)) +fc_3_out = tf.nn.tanh(fc_3) +fc_3_dropout = tf.layers.dropout(inputs=fc_3_out, rate=dropout) + +decoder_op = tf.layers.dense(inputs=fc_3_dropout, units=n_input) +################################################################## + + +y_pred = decoder_op +y_true = X + + +cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))#+lossL +l2_loss = tf.losses.get_regularization_loss() +optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost+l2_loss) + +with tf.Session() as sess: + # tf.initialize_all_variables() no long valid from + # 2017-03-02 if using tensorflow >= 0.12 + if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: + init = tf.initialize_all_variables() + else: + init = tf.global_variables_initializer() + sess.run(init) + + total_batch = int(len(tcga_input)/batch_size) + for epoch in range(training_epochs): + for i in range(total_batch): + # tch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 + batch_xs = tcga_input[((i)*batch_size):((i+1)*batch_size)] + # Run optimization op (backprop) and cost op (to get loss value) + _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) + if epoch % display_step == 0: + print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) + if epoch == training_epochs - 1: + fea_output = sess.run([encoder_op], feed_dict={X: tcga_input}) + # print(fea_output) + print(np.array(fea_output).shape) + np.savetxt(r'C:\pypro\fea.csv', np.array(fea_output[0]), delimiter=',') + print("Optimization Finished!") + +