Diff of /DAE-DCAP.py [000000] .. [a50134]

Switch to unified view

a b/DAE-DCAP.py
1
2
3
import tensorflow as tf
4
import numpy as np  
5
import matplotlib.pyplot as plt  
6
import pandas as pd
7
from sklearn.cluster import KMeans
8
from sklearn.metrics import silhouette_score
9
10
with open(r"simulation.csv", 'r') as f:
11
    data = pd.read_csv(f)
12
13
#print(data.shape)
14
tcga_input=np.transpose(data)
15
print(tcga_input.shape[1])
16
length1 = tcga_input.shape[1]
17
learning_rate = 0.0001
18
training_epochs = 100
19
batch_size = 125
20
display_step = 2
21
examples_to_show = 10
22
n_input = tcga_input.shape[1]
23
  
24
25
X = tf.placeholder("float", [None, n_input])  
26
  
27
28
n_hidden_1 = 200
29
n_hidden_2 = 50
30
n_hidden_3 = 2
31
32
weights = {  
33
    'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),  
34
    'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
35
    'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
36
    'decoder_h1': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])),
37
    'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
38
    'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
39
40
41
}  
42
biases = {  
43
    'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),  
44
    'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
45
    'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
46
    'decoder_b1': tf.Variable(tf.random_normal([n_hidden_2])),
47
    'decoder_b2': tf.Variable(tf.random_normal([n_hidden_1])),
48
    'decoder_b3': tf.Variable(tf.random_normal([n_input])),
49
}  
50
  
51
52
def encoder(x):  
53
    layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['encoder_h1']),
54
                                   biases['encoder_b1']))  
55
    layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
56
                                   biases['encoder_b2']))
57
    layer_3 = tf.nn.tanh(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
58
                                   biases['encoder_b3']))
59
    return layer_3
60
  
61
  
62
63
def decoder(x):  
64
    layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights['decoder_h1']),
65
                                   biases['decoder_b1']))  
66
    layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
67
                                   biases['decoder_b2']))
68
    layer_3 = tf.nn.tanh(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
69
                                   biases['decoder_b3']))
70
    return layer_3
71
  
72
73
encoder_op = encoder(X)  
74
decoder_op = decoder(encoder_op)  
75
  
76
77
y_pred = decoder_op  
78
y_true = X  
79
  
80
81
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
82
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)  
83
  
84
with tf.Session() as sess:
85
    if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:  
86
        init = tf.initialize_all_variables()  
87
    else:  
88
        init = tf.global_variables_initializer()  
89
    sess.run(init)  
90
91
    total_batch = int(len(tcga_input)/batch_size)
92
    for epoch in range(training_epochs):  
93
        for i in range(total_batch):
94
            batch_xs = tcga_input[((i) * batch_size):((i + 1) * batch_size)] + 0.3 * np.random.rand(length1)   #added nosie
95
            # Run optimization op (backprop) and cost op (to get loss value)
96
            _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
97
        if epoch % display_step == 0:  
98
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
99
        if epoch == training_epochs - 1:
100
                fea_output = sess.run([encoder_op], feed_dict={X: tcga_input})
101
                # print(fea_output)
102
                print(np.array(fea_output).shape)
103
                np.savetxt(r'fea.csv', np.array(fea_output[0]), delimiter=',')
104
                dd = np.array(fea_output[0])
105
    print("Optimization Finished!")
106
    print(dd.shape)
107
    clf = KMeans(n_clusters=2)
108
    clf.fit(dd)
109
    centers = clf.cluster_centers_
110
    labels = clf.labels_
111
    silhouetteScore = silhouette_score(dd, labels, metric='euclidean')
112
    print(centers)
113
    print(silhouetteScore)
114
    # encode_decode = sess.run(
115
    #     y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
116
    # f, a = plt.subplots(2, 10, figsize=(10, 2))  #return fig,axes
117
    # for i in range(examples_to_show):  
118
    #     a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))  
119
    #     a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))  
120
    # plt.show()