|
a |
|
b/Cox_DCAP.R |
|
|
1 |
library("xgboost") |
|
|
2 |
library("ipred") |
|
|
3 |
library("survival") |
|
|
4 |
library("survivalROC") |
|
|
5 |
library("glmnet") |
|
|
6 |
library('kernlab') |
|
|
7 |
library('plyr') |
|
|
8 |
library('caret') |
|
|
9 |
|
|
|
10 |
setwd('D:/brca') |
|
|
11 |
|
|
|
12 |
kx2=read.csv('data_cox2.csv',row.names= 1) |
|
|
13 |
sdata=read.csv('brca_go.csv',row.names= 1) |
|
|
14 |
data1=t(sdata) |
|
|
15 |
|
|
|
16 |
j=6 |
|
|
17 |
set.seed(j) |
|
|
18 |
k=10 |
|
|
19 |
folds <- createFolds(as.data.frame(t(kx2)),k) |
|
|
20 |
results<-matrix(nrow = k, ncol=6) |
|
|
21 |
im=matrix(nrow=500,ncol=30) |
|
|
22 |
eva<-matrix(nrow = nrow(kx2), ncol=k) |
|
|
23 |
count=0 |
|
|
24 |
for(i in 1:k){ |
|
|
25 |
testset <- kx2[folds[[i]],] |
|
|
26 |
trainset <- kx2[-folds[[i]],] |
|
|
27 |
te_xg=data1[folds[[i]],] |
|
|
28 |
tr_xg=data1[-folds[[i]],] |
|
|
29 |
x=trainset[,-c(1:2)] |
|
|
30 |
x=as.matrix(x) |
|
|
31 |
tc=trainset$time |
|
|
32 |
tc[tc==0]=0.001 |
|
|
33 |
y=Surv(tc,trainset$status) |
|
|
34 |
cv.fit<-cv.glmnet(x,y,family="cox",maxit=10000,alpha=0,nfold=5) |
|
|
35 |
fit<-glmnet(x,y,family="cox",alpha=0) |
|
|
36 |
tt=predict(fit,x,s=cv.fit$lambda.min) |
|
|
37 |
x2=testset[,-c(1:2)] |
|
|
38 |
x2=as.matrix(x2) |
|
|
39 |
tc2=testset$time |
|
|
40 |
tc2[tc2==0]=0.001 |
|
|
41 |
y2=Surv(tc2,testset$status) |
|
|
42 |
tt2=predict(fit,x2,s=cv.fit$lambda.min) |
|
|
43 |
y_xgtr=tt; |
|
|
44 |
x_xgtr=tr_xg |
|
|
45 |
x_xgtr=as.matrix(x_xgtr) |
|
|
46 |
x_xgte=te_xg |
|
|
47 |
x_xgte=as.matrix(x_xgte) |
|
|
48 |
bst <- xgboost(x_xgtr, y_xgtr, |
|
|
49 |
max_depth =3, eta =0.25, nrounds =6, min_child_weight=2, |
|
|
50 |
objective = "reg:linear",eval_metric = "rmse") |
|
|
51 |
pred <- predict(bst, x_xgte) |
|
|
52 |
eva[(count+1):(count+nrow(tt2)),1]<-tc2 |
|
|
53 |
eva[(count+1):(count+nrow(tt2)),2]<-testset$status |
|
|
54 |
eva[(count+1):(count+nrow(tt2)),3]=tt2 |
|
|
55 |
eva[(count+1):(count+nrow(tt2)),4]=pred |
|
|
56 |
count=count+nrow(tt2) |
|
|
57 |
|
|
|
58 |
} |
|
|
59 |
|
|
|
60 |
tc3=eva[,1] |
|
|
61 |
st3=eva[,2] |
|
|
62 |
rk3=eva[,3] |
|
|
63 |
rk4=eva[,4] |
|
|
64 |
|
|
|
65 |
y3=Surv(tc3,st3) |
|
|
66 |
ci_Cox=survConcordance(formula = y3~ rk3) |
|
|
67 |
ci_Cox$concordance |
|
|
68 |
ci_XGB=survConcordance(formula = y3~ rk4) |
|
|
69 |
ci_XGB$concordance |
|
|
70 |
|
|
|
71 |
|