CustOmics: A versatile deep-learning based strategy for multi-omics integration
Hakim Benkirane (hakim.benkirane@centralesupelec.fr)
Oncostat Team, U1018 Inserm, CESP
Laboratory of mathematics and informatics of CentraleSupelec
Paper Link: Link to the published paper
To download omics data (formatted as .tsv files) and other clinical metadata, please refer to the NIH Genomic Data Commons Data Portal and the cBioPortal.
Experiments can be executed through the script main.py, the basic usage to run a tumor type classification on the Pancancer dataset is as follows:
python main.py --cohorts PANCAN --sources CNV,RNAseq,methyl --task classification --data_directory DATA_DIRECTORY --result_directory RESULTS_DIRECTORY
To run PAM50 classification task on TCGA-BRCA dataset:
python main.py --cohorts TCGA-BRCA --sources CNV,RNAseq,methyl --task classification --data_directory DATA_DIRECTORY --result_directory RESULTS_DIRECTORY
To run survival tasks on specific datasets:
python main.py --cohorts TCGA-BLCA,TCGA-BRCA,TCGA-LUAD,TCGA-GBM,TCGA-UCEC --sources CNV,RNAseq,methyl --task survival --data_directory DATA_DIRECTORY --result_directory RESULTS_DIRECTORY
This source code is licensed under the MIT license.
If you use this code in your research, please cite our paper.
@article{benkirane2023,
doi = {10.1371/journal.pcbi.1010921},
author = {Benkirane, Hakim AND Pradat, Yoann AND Michiels, Stefan AND Cournède, Paul-Henry},
journal = {PLOS Computational Biology},
publisher = {Public Library of Science},
title = {CustOmics: A versatile deep-learning based strategy for multi-omics integration},
year = {2023},
month = {03},
volume = {19},
url = {https://doi.org/10.1371/journal.pcbi.1010921},
pages = {1-19},
number = {3}
}