|
a |
|
b/myeloid/myeloid_fig1ABCDE_publish.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"import scanpy as sc # v1.6\",\n", |
|
|
12 |
"import sys\n", |
|
|
13 |
"import matplotlib.pyplot as plt\n", |
|
|
14 |
"import os.path\n", |
|
|
15 |
"import anndata\n", |
|
|
16 |
"from matplotlib import rcParams\n", |
|
|
17 |
"import seaborn as sns\n", |
|
|
18 |
"import numba\n", |
|
|
19 |
"import mnnpy\n", |
|
|
20 |
"import scipy" |
|
|
21 |
] |
|
|
22 |
}, |
|
|
23 |
{ |
|
|
24 |
"cell_type": "code", |
|
|
25 |
"execution_count": null, |
|
|
26 |
"metadata": {}, |
|
|
27 |
"outputs": [], |
|
|
28 |
"source": [ |
|
|
29 |
"#import full COVID-19 PBMC dataset\n", |
|
|
30 |
"os.chdir('/home/ngr18/covid/')\n", |
|
|
31 |
"covid_total = sc.read_h5ad('covid.h5ad')" |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
{ |
|
|
35 |
"cell_type": "code", |
|
|
36 |
"execution_count": null, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"outputs": [], |
|
|
39 |
"source": [ |
|
|
40 |
"#Import BAL data GSE145926 (reannotated for DC subsets)\n", |
|
|
41 |
"\n", |
|
|
42 |
"os.chdir('/home/ngr18/covid/external_dataset/BAL')\n", |
|
|
43 |
"bal = sc.read_h5ad('full_bal.h5ad')" |
|
|
44 |
] |
|
|
45 |
}, |
|
|
46 |
{ |
|
|
47 |
"cell_type": "code", |
|
|
48 |
"execution_count": null, |
|
|
49 |
"metadata": {}, |
|
|
50 |
"outputs": [], |
|
|
51 |
"source": [ |
|
|
52 |
"#Subset PBMC data to myeloid populations and reorder categories (for dotplot visualisations)\n", |
|
|
53 |
"\n", |
|
|
54 |
"blood_myeloid = covid_total[covid_total.obs.full_clustering.isin(['CD83_CD14_mono', 'CD14_mono', \n", |
|
|
55 |
" 'CD16_mono', 'C1_CD16_mono',\n", |
|
|
56 |
" 'DC1', 'DC2', 'DC3', 'ASDC', 'pDC', 'DC_prolif',\n", |
|
|
57 |
" 'Mono_prolif']),:]\n", |
|
|
58 |
"\n", |
|
|
59 |
"blood_myeloid.obs.full_clustering = blood_myeloid.obs.full_clustering.cat.reorder_categories([\n", |
|
|
60 |
"'DC1', 'DC2', 'DC3', 'ASDC', 'pDC', 'DC_prolif', \n", |
|
|
61 |
" 'CD83_CD14_mono', 'CD14_mono', 'CD16_mono', 'C1_CD16_mono', 'Mono_prolif'])" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": null, |
|
|
67 |
"metadata": {}, |
|
|
68 |
"outputs": [], |
|
|
69 |
"source": [ |
|
|
70 |
"#Concatenate PBMC and BAL data for visualisations\n", |
|
|
71 |
"\n", |
|
|
72 |
"myeloid = anndata.concat([bal_myeloid, blood_myeloid], index_unique = None)" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "code", |
|
|
77 |
"execution_count": null, |
|
|
78 |
"metadata": {}, |
|
|
79 |
"outputs": [], |
|
|
80 |
"source": [ |
|
|
81 |
"##myeloid figure dotplot - fig 2A (left - RNA)\n", |
|
|
82 |
"\n", |
|
|
83 |
"sc.pl.DotPlot(myeloid, [\n", |
|
|
84 |
"'CLEC9A', 'CADM1', 'CLEC10A','CD1C', 'CD14', 'VCAN',\n", |
|
|
85 |
" 'CCR7', 'LAMP3',\n", |
|
|
86 |
" 'AXL', 'SIGLEC6',\n", |
|
|
87 |
" 'LILRA4', 'ITM2C', 'GZMB',\n", |
|
|
88 |
" 'IL1B', 'IER3', 'LDLR', 'CD83',\n", |
|
|
89 |
" 'S100A12', 'CSF3R', \n", |
|
|
90 |
" 'FCGR3A', 'MS4A7', 'LILRB1', 'CSF1R', 'CDKN1C',\n", |
|
|
91 |
" 'C1QA', 'C1QB', 'C1QC', 'CCR1',\n", |
|
|
92 |
" \n", |
|
|
93 |
" 'MARCO', 'MKI67', 'TOP2A'], \n", |
|
|
94 |
" log = True, \n", |
|
|
95 |
" groupby='full_clustering').style(cmap='Blues',dot_edge_color='black', dot_edge_lw=1).swap_axes(False).show(True)\n" |
|
|
96 |
] |
|
|
97 |
}, |
|
|
98 |
{ |
|
|
99 |
"cell_type": "code", |
|
|
100 |
"execution_count": null, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"outputs": [], |
|
|
103 |
"source": [ |
|
|
104 |
"##myeloid figure dotplot - fig 2A (right - protein) - using only PBMC data (no CITEseq data for BAL)\n", |
|
|
105 |
"\n", |
|
|
106 |
"sc.pl.DotPlot(blood_myeloid, ['AB_CD141', 'AB_CLEC9A', 'AB_KIT','AB_BTLA',\n", |
|
|
107 |
" 'AB_CD1C', 'AB_CD101', 'AB_FcERIa',\n", |
|
|
108 |
" 'AB_CD5', \n", |
|
|
109 |
" 'AB_CD123', 'AB_CD45RA', 'AB_CD304',\n", |
|
|
110 |
" 'AB_CD14', 'AB_CD99', 'AB_CD64', \n", |
|
|
111 |
" 'AB_CR1', 'AB_ITGAM',\n", |
|
|
112 |
" 'AB_CD16', 'AB_C5AR1',\n", |
|
|
113 |
" 'AB_CX3CR1'], \n", |
|
|
114 |
" log = True, \n", |
|
|
115 |
" groupby='full_clustering', expression_cutoff=0.15).style(cmap='YlOrRd',dot_edge_color='black', dot_edge_lw=1).swap_axes(False).show(True)\n" |
|
|
116 |
] |
|
|
117 |
}, |
|
|
118 |
{ |
|
|
119 |
"cell_type": "code", |
|
|
120 |
"execution_count": null, |
|
|
121 |
"metadata": {}, |
|
|
122 |
"outputs": [], |
|
|
123 |
"source": [ |
|
|
124 |
"#subset data again to blood monocyte and BAL macrophages\n", |
|
|
125 |
"\n", |
|
|
126 |
"monos = myeloid[myeloid.obs.full_clustering.isin(['CD83_CD14_mono', 'CD14_mono', 'CD16_mono', 'C1_CD16_mono', \n", |
|
|
127 |
" 'bal_Mac']),:]" |
|
|
128 |
] |
|
|
129 |
}, |
|
|
130 |
{ |
|
|
131 |
"cell_type": "code", |
|
|
132 |
"execution_count": null, |
|
|
133 |
"metadata": {}, |
|
|
134 |
"outputs": [], |
|
|
135 |
"source": [ |
|
|
136 |
"#Figure 2C left/upper - analysis of healthy only\n", |
|
|
137 |
"healthy = monos[monos.obs.Status_on_day_collection_summary.isin(['bal_healthy', 'Healthy']),:]\n", |
|
|
138 |
"\n", |
|
|
139 |
"sc.pp.normalize_total(healthy, target_sum=1e4)\n", |
|
|
140 |
"\n", |
|
|
141 |
"sc.pp.log1p(healthy)\n", |
|
|
142 |
"\n", |
|
|
143 |
"sc.pp.highly_variable_genes(healthy, n_top_genes = 3000, flavor = 'seurat')\n", |
|
|
144 |
"\n", |
|
|
145 |
"healthy.raw = healthy\n", |
|
|
146 |
"\n", |
|
|
147 |
"healthy = healthy[:, healthy.var.highly_variable]\n", |
|
|
148 |
"\n", |
|
|
149 |
"sc.pp.scale(healthy, max_value=10)\n", |
|
|
150 |
"\n", |
|
|
151 |
"sc.tl.pca(healthy, svd_solver='arpack')\n", |
|
|
152 |
"\n", |
|
|
153 |
"sc.external.pp.harmony_integrate(healthy, 'sample_id', basis='X_pca', adjusted_basis='X_pca_harmony')\n", |
|
|
154 |
"\n", |
|
|
155 |
"sc.pp.neighbors(healthy, n_neighbors=10, n_pcs=50, use_rep = 'X_pca_harmony')\n", |
|
|
156 |
"\n", |
|
|
157 |
"sc.tl.paga(healthy, groups='full_clustering')\n", |
|
|
158 |
"\n", |
|
|
159 |
"#recolor clusters for consistency with bar graph\n", |
|
|
160 |
"\n", |
|
|
161 |
"healthy.uns['full_clustering_colors'][0] = '#76DDC9'\n", |
|
|
162 |
"healthy.uns['full_clustering_colors'][1] = '#E28686'\n", |
|
|
163 |
"healthy.uns['full_clustering_colors'][2] = '#C2A3E2'\n", |
|
|
164 |
"healthy.uns['full_clustering_colors'][3] = '#991111'\n", |
|
|
165 |
"healthy.uns['full_clustering_colors'][4] = '#ffff00'\n", |
|
|
166 |
"\n", |
|
|
167 |
"\n", |
|
|
168 |
"sc.pl.paga(test, color=['full_clustering'], threshold = 0.11, save = 'healthy_myeloid_PAGA.pdf',\n", |
|
|
169 |
" fontsize = 0, node_size_scale = 10, min_edge_width = 5, frameon = False)" |
|
|
170 |
] |
|
|
171 |
}, |
|
|
172 |
{ |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"execution_count": null, |
|
|
175 |
"metadata": {}, |
|
|
176 |
"outputs": [], |
|
|
177 |
"source": [ |
|
|
178 |
"#Figure 2C left/lower - limit to only covid samples\n", |
|
|
179 |
"covid_mono = covid_mono[covid_mono.obs.Status_on_day_collection_summary.isin(['Asymptomatic', 'Critical', \n", |
|
|
180 |
" 'Mild', 'Moderate', 'Severe',\n", |
|
|
181 |
" 'bal_mild', 'bal_severe']),:]\n", |
|
|
182 |
"\n", |
|
|
183 |
"sc.pp.normalize_total(covid_mono, target_sum=1e4)\n", |
|
|
184 |
"\n", |
|
|
185 |
"sc.pp.log1p(covid_mono)\n", |
|
|
186 |
"\n", |
|
|
187 |
"sc.pp.highly_variable_genes(covid_mono, n_top_genes = 3000, flavor = 'seurat')\n", |
|
|
188 |
"\n", |
|
|
189 |
"covid_mono.raw = covid_mono\n", |
|
|
190 |
"\n", |
|
|
191 |
"covid_mono = covid_mono[:, covid_mono.var.highly_variable]\n", |
|
|
192 |
"\n", |
|
|
193 |
"sc.pp.scale(covid_mono, max_value=10)\n", |
|
|
194 |
"\n", |
|
|
195 |
"sc.tl.pca(covid_mono, svd_solver='arpack')\n", |
|
|
196 |
"\n", |
|
|
197 |
"sc.external.pp.harmony_integrate(covid_mono, 'sample_id', basis='X_pca', adjusted_basis='X_pca_harmony')\n", |
|
|
198 |
"\n", |
|
|
199 |
"sc.pp.neighbors(covid_mono, n_neighbors=10, n_pcs=50, use_rep = 'X_pca_harmony')\n", |
|
|
200 |
"\n", |
|
|
201 |
"sc.tl.paga(covid_mono, groups='full_clustering')\n", |
|
|
202 |
"\n", |
|
|
203 |
"#Again, recolor for consistency with bar graph\n", |
|
|
204 |
"\n", |
|
|
205 |
"covid_mono.uns['full_clustering_colors'][0] = '#76DDC9'\n", |
|
|
206 |
"covid_mono.uns['full_clustering_colors'][1] = '#E28686'\n", |
|
|
207 |
"covid_mono.uns['full_clustering_colors'][2] = '#C2A3E2'\n", |
|
|
208 |
"covid_mono.uns['full_clustering_colors'][3] = '#991111'\n", |
|
|
209 |
"covid_mono.uns['full_clustering_colors'][4] = '#ffff00'\n", |
|
|
210 |
"\n", |
|
|
211 |
"\n", |
|
|
212 |
"sc.pl.paga(covid_mono, color=['full_clustering'], threshold = 0.2, save = 'covid_myeloid_PAGA.pdf',\n", |
|
|
213 |
" fontsize = 0, node_size_scale = 10, min_edge_width = 5, frameon = False)" |
|
|
214 |
] |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
"cell_type": "code", |
|
|
218 |
"execution_count": null, |
|
|
219 |
"metadata": {}, |
|
|
220 |
"outputs": [], |
|
|
221 |
"source": [ |
|
|
222 |
"#Pseudotime plot\n", |
|
|
223 |
"\n", |
|
|
224 |
"covid_mono.uns['iroot'] = np.flatnonzero(covid_mono.obs['full_clustering'] == 'CD83_CD14_mono')[0]\n", |
|
|
225 |
"\n", |
|
|
226 |
"\n", |
|
|
227 |
"sc.pp.log1p(covid_mono)\n", |
|
|
228 |
"sc.pp.scale(covid_mono)\n", |
|
|
229 |
" \n", |
|
|
230 |
" gene_names = ['NFKBIA', 'KLF6', 'VIM', 'CD14', 'S100A8',\n", |
|
|
231 |
" 'HLA-DPA1', 'HLA-DPB1', 'FCGR3A','CTSC', 'CTSL', \n", |
|
|
232 |
" 'CCR1','RSAD2', 'CCL2', 'CXCL10', 'CCL7', 'TNFSF10'] # monocyte\n", |
|
|
233 |
"\n", |
|
|
234 |
"paths = [('erythrocytes', ['mono1', 'mono2', 'mono3', 'mono4', 'bal_Mac']),\n", |
|
|
235 |
" ('neutrophils', ['mono1', 'mono2', 'mono3', 'mono4', 'bal_Mac']),\n", |
|
|
236 |
" ('monocytes', ['mono1', 'mono2', 'mono3', 'mono4', 'bal_Mac'])]\n", |
|
|
237 |
"\n", |
|
|
238 |
"test.obs['distance'] = test.obs['dpt_pseudotime']\n", |
|
|
239 |
"\n", |
|
|
240 |
"_, axs = plt.subplots(ncols=3, figsize=(6, 5), gridspec_kw={'wspace': 0.05, 'left': 0.12})\n", |
|
|
241 |
"plt.subplots_adjust(left=0.05, right=0.98, top=0.82, bottom=0.2)\n", |
|
|
242 |
"for ipath, (descr, path) in enumerate(paths):\n", |
|
|
243 |
" _, data = sc.pl.paga_path(\n", |
|
|
244 |
" test, path, gene_names,\n", |
|
|
245 |
" show_node_names=False,\n", |
|
|
246 |
" ax=axs[ipath],\n", |
|
|
247 |
" ytick_fontsize=12,\n", |
|
|
248 |
" left_margin=0.15,\n", |
|
|
249 |
" n_avg=50,\n", |
|
|
250 |
" annotations=['distance'],\n", |
|
|
251 |
" show_yticks=True if ipath==0 else False,\n", |
|
|
252 |
" show_colorbar=False,\n", |
|
|
253 |
" color_map='coolwarm',\n", |
|
|
254 |
" color_maps_annotations={'distance': 'viridis'},\n", |
|
|
255 |
" title='{} path'.format(descr),\n", |
|
|
256 |
" return_data=True,\n", |
|
|
257 |
" show=False, normalize_to_zero_one = True)" |
|
|
258 |
] |
|
|
259 |
} |
|
|
260 |
], |
|
|
261 |
"metadata": { |
|
|
262 |
"kernelspec": { |
|
|
263 |
"display_name": "covid_py", |
|
|
264 |
"language": "python", |
|
|
265 |
"name": "covid_py" |
|
|
266 |
}, |
|
|
267 |
"language_info": { |
|
|
268 |
"codemirror_mode": { |
|
|
269 |
"name": "ipython", |
|
|
270 |
"version": 3 |
|
|
271 |
}, |
|
|
272 |
"file_extension": ".py", |
|
|
273 |
"mimetype": "text/x-python", |
|
|
274 |
"name": "python", |
|
|
275 |
"nbconvert_exporter": "python", |
|
|
276 |
"pygments_lexer": "ipython3", |
|
|
277 |
"version": "3.8.5" |
|
|
278 |
} |
|
|
279 |
}, |
|
|
280 |
"nbformat": 4, |
|
|
281 |
"nbformat_minor": 4 |
|
|
282 |
} |