|
a |
|
b/TcellAnalysis/notebooks/COVID19_Tcell_DA-Updated.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "COVID19: T cell differential abundance - Updated" |
|
|
3 |
output: html_notebook |
|
|
4 |
--- |
|
|
5 |
|
|
|
6 |
Performing differential abundance testing using a negative binomial GLM. Cell counts per donor sample are used as input, and the total number of cells |
|
|
7 |
captured (after QC) are used to normalize the model counts. |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
```{r, warning=FALSE, message=FALSE} |
|
|
11 |
library(ggplot2) |
|
|
12 |
library(ggsci) |
|
|
13 |
library(cowplot) |
|
|
14 |
library(RColorBrewer) |
|
|
15 |
library(reshape2) |
|
|
16 |
library(colorspace) |
|
|
17 |
library(ggthemes) |
|
|
18 |
library(edgeR) |
|
|
19 |
library(scales) |
|
|
20 |
library(ggrepel) |
|
|
21 |
library(dplyr) |
|
|
22 |
``` |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
```{r} |
|
|
26 |
covid.meta <- read.csv("~/Dropbox/COVID19/Data/basic_COVID19_PBMC_metadata_160212.csv", |
|
|
27 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
28 |
old.meta <- read.csv("~/Dropbox/COVID19/Data/Metadata FINAL 10122020.csv", |
|
|
29 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
30 |
old.meta$sample_id[old.meta$sample_id %in% c("BGCV13_CV0201")] <- "BGCV06_CV0201" |
|
|
31 |
old.meta$sample_id[old.meta$sample_id %in% c("BGCV06_CV0326")] <- "BGCV13_CV0326" |
|
|
32 |
|
|
|
33 |
covid.meta$AgeRange <- covid.meta$Age |
|
|
34 |
covid.meta$Status_on_day_collection_summary[covid.meta$Status_on_day_collection_summary %in% c("LPS_10hours")] <- "LPS" |
|
|
35 |
covid.meta$Status_on_day_collection_summary[covid.meta$Status_on_day_collection_summary %in% c("LPS_90mins")] <- "LPS" |
|
|
36 |
|
|
|
37 |
covid.meta <- merge(covid.meta[, !colnames(covid.meta) %in% c("Age")], old.meta[, c("sample_id", "patient_id", "Age")], |
|
|
38 |
by='sample_id') |
|
|
39 |
|
|
|
40 |
covid.meta$Days_from_onset[covid.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA |
|
|
41 |
covid.meta$Days_from_onset <- as.numeric(covid.meta$Days_from_onset) |
|
|
42 |
|
|
|
43 |
cell.freq.merge <- read.table("~/Dropbox/COVID19/Data/Updated/Tcell_proportions.tsv", |
|
|
44 |
sep="\t", header=TRUE, stringsAsFactors=FALSE) |
|
|
45 |
|
|
|
46 |
cell.freq.merge <- cell.freq.merge[!cell.freq.merge$Status_on_day_collection_summary %in% c("Non_covid"), ] |
|
|
47 |
cell.freq.merge <- cell.freq.merge[!cell.freq.merge$patient_id %in% c("CV0198"), ] |
|
|
48 |
cell.freq.merge <- cell.freq.merge[!cell.freq.merge$sample_id %in% c("BGCV01_CV0902"), ] |
|
|
49 |
# remove doublets, etc |
|
|
50 |
cell.freq.merge <- cell.freq.merge[!cell.freq.merge$CellType %in% c("Doublets:Bcell", "ILC1_3", "ILC2", "Doublets:Platelet", "Doublets", "NK", "ILCs"), ] |
|
|
51 |
``` |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
```{r, warning=FALSE, message=FALSE} |
|
|
55 |
all.meta <- read.table("~/Dropbox/COVID19/Data/Updated/COVID19_scMeta-data.tsv", |
|
|
56 |
sep="\t", header=TRUE, stringsAsFactors=FALSE) |
|
|
57 |
rownames(all.meta) <- all.meta$CellID |
|
|
58 |
|
|
|
59 |
# remove BGCV01_CV0209 and CV0198 |
|
|
60 |
all.meta <- all.meta[!all.meta$sample_id %in% c("BGCV01_CV0902"), ] |
|
|
61 |
all.meta <- all.meta[!all.meta$patient_id %in% c("CV0198"), ] |
|
|
62 |
|
|
|
63 |
all.meta$Status_on_day_collection_summary[all.meta$Status_on_day_collection_summary %in% c("LPS_90mins", "LPS_10hours")] <- "LPS" |
|
|
64 |
|
|
|
65 |
all.meta$Days_from_onset[all.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA |
|
|
66 |
all.meta$Days_from_onset <- as.numeric(all.meta$Days_from_onset) |
|
|
67 |
|
|
|
68 |
n.cell.vecc <- table(all.meta$sample_id) |
|
|
69 |
``` |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
```{r} |
|
|
73 |
tcell.annots <- read.table("~/Dropbox/COVID19/Data/Updated//Tcell_annotations_ext.tsv", |
|
|
74 |
sep="\t", header=TRUE, stringsAsFactors=FALSE) |
|
|
75 |
tcell.df.merge <- merge(tcell.annots, all.meta, by='CellID') |
|
|
76 |
``` |
|
|
77 |
|
|
|
78 |
## Cluster-baed DA analysis: Infected vs. controls |
|
|
79 |
|
|
|
80 |
```{r} |
|
|
81 |
# set up testing model |
|
|
82 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
83 |
tcell.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS"), ] |
|
|
84 |
tcell.meta$OrderedSeverity <- ordered(tcell.meta$Status_on_day_collection_summary, |
|
|
85 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
86 |
tcell.meta$Infected <- ordered(tcell.meta$Status, |
|
|
87 |
levels=c("Healthy", "Covid")) |
|
|
88 |
|
|
|
89 |
tcell.model <- model.matrix(~ Sex + Age + Infected, data=tcell.meta[tcell.meta$Collection_Day %in% c("D0"), ]) |
|
|
90 |
|
|
|
91 |
# count cells |
|
|
92 |
cell.freq.tab <- t(table(tcell.df.merge$sample_id[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
93 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid")], |
|
|
94 |
tcell.df.merge$Sub.Annotation[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
95 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid")])) |
|
|
96 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublets:Bcell", "ILC1_3", "ILC2", "Doublets:Platelet", "Doublets", "NK", "ILCs"), ] |
|
|
97 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
98 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
99 |
tcell.model <- tcell.model[colnames(cell.freq.tab), ] |
|
|
100 |
|
|
|
101 |
tcell.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
102 |
|
|
|
103 |
#estimate dispersions |
|
|
104 |
tcell.dge <- estimateDisp(tcell.dge, design=tcell.model) |
|
|
105 |
tcell.linear.fit <- glmQLFit(tcell.dge, tcell.model, robust=TRUE) |
|
|
106 |
tcell.res <- as.data.frame(topTags(glmQLFTest(tcell.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
107 |
tcell.res$CellType <- rownames(tcell.res) |
|
|
108 |
|
|
|
109 |
tcell.res$Sig <- as.numeric(tcell.res$FDR < 0.1) |
|
|
110 |
tcell.res$Diff <- sign(tcell.res$logFC) |
|
|
111 |
tcell.res$Diff[tcell.res$FDR > 0.1] <- 0 |
|
|
112 |
table(tcell.res$Diff) |
|
|
113 |
``` |
|
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
|
117 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
118 |
mx.lfc <- max(abs(tcell.res$logFC)) |
|
|
119 |
eps <- mx.lfc * 0.05 |
|
|
120 |
|
|
|
121 |
infect.resplot.labels <- tcell.res$CellType |
|
|
122 |
infect.resplot.labels[tcell.res$Sig == 0] <- "" |
|
|
123 |
|
|
|
124 |
ggplot(tcell.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
125 |
geom_point(shape=21, size=4) + |
|
|
126 |
theme_cowplot() + |
|
|
127 |
scale_fill_manual(values=c("black", "red")) + |
|
|
128 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
129 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
130 |
geom_text_repel(aes(label=infect.resplot.labels), |
|
|
131 |
fill='white') + |
|
|
132 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
133 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell_edgeR_volcano_caseVscontrol-linear.pdf", |
|
|
134 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
135 |
NULL |
|
|
136 |
``` |
|
|
137 |
|
|
|
138 |
|
|
|
139 |
## Cluster-baed DA analysis: COVID19 severity |
|
|
140 |
|
|
|
141 |
```{r} |
|
|
142 |
# set up testing model |
|
|
143 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
144 |
tcell.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS", "Healthy"), ] |
|
|
145 |
tcell.meta$OrderedSeverity <- ordered(tcell.meta$Status_on_day_collection_summary, |
|
|
146 |
levels=c("Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
147 |
|
|
|
148 |
tcell.model <- model.matrix(~ Sex + Age + OrderedSeverity, data=tcell.meta[tcell.meta$Collection_Day %in% c("D0"), ]) |
|
|
149 |
|
|
|
150 |
# count cells |
|
|
151 |
cell.freq.tab <- t(table(tcell.df.merge$sample_id[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
152 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy")], |
|
|
153 |
tcell.df.merge$Sub.Annotation[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
154 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy")])) |
|
|
155 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublets:Bcell", "ILC1_3", "ILC2", "Doublets:Platelet", "Doublets", "NK", "ILCs"), ] |
|
|
156 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
157 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
158 |
tcell.model <- tcell.model[colnames(cell.freq.tab), ] |
|
|
159 |
|
|
|
160 |
tcell.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
161 |
|
|
|
162 |
#estimate dispersions |
|
|
163 |
tcell.dge <- estimateDisp(tcell.dge, design=tcell.model) |
|
|
164 |
tcell.linear.fit <- glmQLFit(tcell.dge, tcell.model, robust=TRUE) |
|
|
165 |
tcell.res <- as.data.frame(topTags(glmQLFTest(tcell.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
166 |
tcell.res$CellType <- rownames(tcell.res) |
|
|
167 |
|
|
|
168 |
tcell.res$Sig <- as.numeric(tcell.res$FDR < 0.1) |
|
|
169 |
tcell.res$Diff <- sign(tcell.res$logFC) |
|
|
170 |
tcell.res$Diff[tcell.res$FDR > 0.1] <- 0 |
|
|
171 |
table(tcell.res$Diff) |
|
|
172 |
``` |
|
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
|
176 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
177 |
mx.lfc <- max(abs(tcell.res$logFC)) |
|
|
178 |
eps <- mx.lfc * 0.05 |
|
|
179 |
|
|
|
180 |
tcell.resplot.labels <- tcell.res$CellType |
|
|
181 |
tcell.resplot.labels[tcell.res$Sig == 0] <- "" |
|
|
182 |
|
|
|
183 |
ggplot(tcell.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
184 |
geom_point(shape=21, size=4) + |
|
|
185 |
theme_cowplot() + |
|
|
186 |
scale_fill_manual(values=c("black", "red")) + |
|
|
187 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
188 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
189 |
geom_text_repel(aes(label=tcell.resplot.labels), |
|
|
190 |
fill='white') + |
|
|
191 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
192 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell_edgeR_volcano_caseOnly-linear.pdf", |
|
|
193 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
194 |
NULL |
|
|
195 |
``` |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
Quadratic changes. |
|
|
199 |
|
|
|
200 |
|
|
|
201 |
```{r} |
|
|
202 |
tcell.quad.res <- as.data.frame(topTags(glmQLFTest(tcell.linear.fit, coef=5), sort.by='none', n=Inf)) |
|
|
203 |
tcell.quad.res$CellType <- rownames(tcell.quad.res) |
|
|
204 |
|
|
|
205 |
tcell.quad.res$Sig <- as.numeric(tcell.quad.res$FDR < 0.1) |
|
|
206 |
tcell.quad.res$Diff <- sign(tcell.quad.res$logFC) |
|
|
207 |
tcell.quad.res$Diff[tcell.quad.res$FDR > 0.1] <- 0 |
|
|
208 |
table(tcell.quad.res$Diff) |
|
|
209 |
``` |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
213 |
mx.lfc <- max(abs(tcell.quad.res$logFC)) |
|
|
214 |
eps <- mx.lfc * 0.05 |
|
|
215 |
|
|
|
216 |
tcell.quad.resplot.labels <- tcell.quad.res$CellType |
|
|
217 |
tcell.quad.resplot.labels[tcell.quad.res$Sig == 0] <- "" |
|
|
218 |
|
|
|
219 |
ggplot(tcell.quad.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
220 |
geom_point(shape=21, size=4) + |
|
|
221 |
theme_cowplot() + |
|
|
222 |
scale_fill_manual(values=c("black", "red")) + |
|
|
223 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
224 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
225 |
geom_text_repel(aes(label=tcell.quad.resplot.labels), |
|
|
226 |
force=10, |
|
|
227 |
fill='white') + |
|
|
228 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
229 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell_edgeR_volcano_caseOnly-quadratic.pdf", |
|
|
230 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
231 |
NULL |
|
|
232 |
``` |
|
|
233 |
|
|
|
234 |
Show a plot of just the DA clusters. |
|
|
235 |
|
|
|
236 |
```{r, warning=FALSE, message=FALSE, fig.height=4.15, fig.width=9.95} |
|
|
237 |
da.clusters <- setdiff(unique(c(tcell.resplot.labels, tcell.quad.resplot.labels)), "CD4.Th17") |
|
|
238 |
|
|
|
239 |
group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") |
|
|
240 |
names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") |
|
|
241 |
|
|
|
242 |
# censor outliers to the 95th quantile for each cell type. |
|
|
243 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
244 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS") & |
|
|
245 |
cell.freq.merge$CellType %in% da.clusters, ] |
|
|
246 |
|
|
|
247 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
248 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
249 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
250 |
|
|
|
251 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
252 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
253 |
|
|
|
254 |
plotting.df$Status_on_day_collection_summary <- ordered(plotting.df$Status_on_day_collection_summary, |
|
|
255 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
256 |
|
|
|
257 |
ggplot(plotting.df[!plotting.df$Status_on_day_collection_summary %in% c("Healthy"), ], |
|
|
258 |
aes(x=Status_on_day_collection_summary, y=Freq, fill=Status_on_day_collection_summary)) + |
|
|
259 |
geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
260 |
theme_cowplot() + |
|
|
261 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
262 |
scale_fill_manual(values=group.cols) + |
|
|
263 |
expand_limits(y=c(0)) + |
|
|
264 |
theme(aspect=1/1.3, |
|
|
265 |
axis.text.x=element_blank(), |
|
|
266 |
axis.ticks.x=element_blank(), |
|
|
267 |
legend.key.size=unit(0.4, "cm"), |
|
|
268 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
269 |
strip.text=element_text(size=12)) + |
|
|
270 |
labs(x="Severity", y="Proportion") + |
|
|
271 |
guides(fill=guide_legend(title="Severity")) + |
|
|
272 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcells_proportions-DA_CasesOnly-boxplot.pdf", |
|
|
273 |
height=4.15, width=9.95, useDingbats=FALSE) + |
|
|
274 |
NULL |
|
|
275 |
``` |
|
|
276 |
|
|
|
277 |
Also show the equivalent plot of healthy vs. infected. |
|
|
278 |
|
|
|
279 |
|
|
|
280 |
```{r, warning=FALSE, message=FALSE, fig.height=4.15, fig.width=9.95} |
|
|
281 |
infect.da.clusters <- setdiff(unique(c(infect.resplot.labels)), "CD4.Th17") |
|
|
282 |
|
|
|
283 |
group.cols <- c("#2ca02c", "#252525") |
|
|
284 |
names(group.cols) <- c("Healthy", "COVID-19") |
|
|
285 |
|
|
|
286 |
# censor outliers to the 95th quantile for each cell type. |
|
|
287 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
288 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS") & |
|
|
289 |
cell.freq.merge$CellType %in% infect.da.clusters, ] |
|
|
290 |
|
|
|
291 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
292 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
293 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
294 |
|
|
|
295 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
296 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
297 |
|
|
|
298 |
plotting.df$Status <- factor(plotting.df$Status, |
|
|
299 |
levels=c("Healthy", "Covid"), |
|
|
300 |
labels=c("Healthy", "COVID-19")) |
|
|
301 |
|
|
|
302 |
ggplot(plotting.df, |
|
|
303 |
aes(x=Status, y=Freq, fill=Status)) + |
|
|
304 |
geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
305 |
theme_cowplot() + |
|
|
306 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
307 |
scale_fill_manual(values=group.cols) + |
|
|
308 |
expand_limits(y=c(0)) + |
|
|
309 |
theme(aspect=1/1.3, |
|
|
310 |
axis.text.x=element_blank(), |
|
|
311 |
axis.ticks.x=element_blank(), |
|
|
312 |
legend.key.size=unit(0.4, "cm"), |
|
|
313 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
314 |
strip.text=element_text(size=12)) + |
|
|
315 |
labs(x="", y="Proportion") + |
|
|
316 |
guides(fill=guide_legend(title="Status")) + |
|
|
317 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcells_proportions-DA_CaseVsControls-boxplot.pdf", |
|
|
318 |
height=4.15, width=9.95, useDingbats=FALSE) + |
|
|
319 |
NULL |
|
|
320 |
``` |
|
|
321 |
|
|
|
322 |
|
|
|
323 |
## Cluster-based DA analysis: days since symptom onset |
|
|
324 |
|
|
|
325 |
```{r} |
|
|
326 |
# set up testing model |
|
|
327 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
328 |
tcell.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS", "Healthy"), ] |
|
|
329 |
tcell.meta$OrderedSeverity <- ordered(tcell.meta$Status_on_day_collection_summary, |
|
|
330 |
levels=c("Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
331 |
tcell.meta <- tcell.meta[tcell.meta$Status_on_day_collection_summary %in% c("Mild", "Moderate", "Severe", "Critical"), ] |
|
|
332 |
|
|
|
333 |
tcell.meta$Days_from_onset[tcell.meta$Days_from_onset %in% c("Not_known")] <- NA |
|
|
334 |
tcell.meta$Days_from_onset <- as.numeric(tcell.meta$Days_from_onset) |
|
|
335 |
tcell.meta <- tcell.meta[!is.na(tcell.meta$Days_from_onset), ] |
|
|
336 |
|
|
|
337 |
|
|
|
338 |
tcell.model <- model.matrix(~ Sex + Age + Days_from_onset, |
|
|
339 |
data=tcell.meta[tcell.meta$Collection_Day %in% c("D0"), ]) |
|
|
340 |
|
|
|
341 |
# count cells |
|
|
342 |
cell.freq.tab <- t(table(tcell.df.merge$sample_id[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
343 |
!is.na(tcell.df.merge$Days_from_onset) & |
|
|
344 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")], |
|
|
345 |
tcell.df.merge$Sub.Annotation[tcell.df.merge$Collection_Day %in% c("D0") & |
|
|
346 |
!is.na(tcell.df.merge$Days_from_onset) & |
|
|
347 |
!tcell.df.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")])) |
|
|
348 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublets:Bcell", "ILC1_3", "ILC2", "Doublets:Platelet", "Doublets", "NK", "ILCs"), ] |
|
|
349 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
350 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
351 |
tcell.model <- tcell.model[colnames(cell.freq.tab), ] |
|
|
352 |
|
|
|
353 |
tcell.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
354 |
|
|
|
355 |
#estimate dispersions |
|
|
356 |
tcell.dge <- estimateDisp(tcell.dge, design=tcell.model) |
|
|
357 |
tcell.linear.fit <- glmQLFit(tcell.dge, tcell.model, robust=TRUE) |
|
|
358 |
tcell.res <- as.data.frame(topTags(glmQLFTest(tcell.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
359 |
tcell.res$CellType <- rownames(tcell.res) |
|
|
360 |
|
|
|
361 |
tcell.res$Sig <- as.numeric(tcell.res$FDR < 0.1) |
|
|
362 |
tcell.res$Diff <- sign(tcell.res$logFC) |
|
|
363 |
tcell.res$Diff[tcell.res$FDR > 0.1] <- 0 |
|
|
364 |
table(tcell.res$Diff) |
|
|
365 |
``` |
|
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
370 |
mx.lfc <- max(abs(tcell.res$logFC)) |
|
|
371 |
eps <- mx.lfc * 0.05 |
|
|
372 |
|
|
|
373 |
tcell.resplot.labels <- tcell.res$CellType |
|
|
374 |
tcell.resplot.labels[tcell.res$Sig == 0] <- "" |
|
|
375 |
|
|
|
376 |
ggplot(tcell.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
377 |
geom_point(shape=21, size=4) + |
|
|
378 |
theme_cowplot() + |
|
|
379 |
scale_fill_manual(values=c("black", "red")) + |
|
|
380 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
381 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
382 |
geom_text_repel(aes(label=tcell.resplot.labels), |
|
|
383 |
fill='white') + |
|
|
384 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
385 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell_edgeR_volcano_daysOnset-linear.pdf", |
|
|
386 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
387 |
NULL |
|
|
388 |
``` |
|
|
389 |
|
|
|
390 |
|
|
|
391 |
Show a plot of just the DA clusters. |
|
|
392 |
|
|
|
393 |
```{r, warning=FALSE, message=FALSE, fig.height=4.15, fig.width=9.95} |
|
|
394 |
da.clusters <- setdiff(unique(c(tcell.resplot.labels, tcell.quad.resplot.labels)), "CD4.Th17") |
|
|
395 |
|
|
|
396 |
group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") |
|
|
397 |
names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") |
|
|
398 |
|
|
|
399 |
# censor outliers to the 95th quantile for each cell type. |
|
|
400 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
401 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS") & |
|
|
402 |
!is.na(cell.freq.merge$Days_from_onset) & |
|
|
403 |
cell.freq.merge$CellType %in% da.clusters, ] |
|
|
404 |
|
|
|
405 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
406 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
407 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
408 |
|
|
|
409 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
410 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
411 |
|
|
|
412 |
plotting.df$Status_on_day_collection_summary <- ordered(plotting.df$Status_on_day_collection_summary, |
|
|
413 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
414 |
|
|
|
415 |
ggplot(plotting.df[!plotting.df$Status_on_day_collection_summary %in% c("Healthy", "Asymptomatic"), ], |
|
|
416 |
aes(x=Days_from_onset, y=Freq, colour=Status_on_day_collection_summary)) + |
|
|
417 |
#geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
418 |
geom_point(size=1) + |
|
|
419 |
#stat_smooth(method="lm") + |
|
|
420 |
theme_cowplot() + |
|
|
421 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
422 |
scale_colour_manual(values=group.cols) + |
|
|
423 |
expand_limits(y=c(0)) + |
|
|
424 |
theme(aspect=1/1.3, |
|
|
425 |
axis.text.x=element_blank(), |
|
|
426 |
axis.ticks.x=element_blank(), |
|
|
427 |
legend.key.size=unit(0.4, "cm"), |
|
|
428 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
429 |
strip.text=element_text(size=12)) + |
|
|
430 |
labs(x="Symptom duration", y="Proportion") + |
|
|
431 |
guides(fill=guide_legend(title="Symptom duration")) + |
|
|
432 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcells_proportions-DA_daysOnset-points.pdf", |
|
|
433 |
height=4.15, width=9.95, useDingbats=FALSE) + |
|
|
434 |
NULL |
|
|
435 |
``` |
|
|
436 |
|
|
|
437 |
|
|
|
438 |
|