|
a |
|
b/TcellAnalysis/notebooks/COVID19_DE_viz-Updated.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "COVID19: DGE visualisation" |
|
|
3 |
output: html_notebook |
|
|
4 |
--- |
|
|
5 |
|
|
|
6 |
This is to visualise the output from DE testing run on each T cell subset, either comparing across linear and quadratic trends. |
|
|
7 |
|
|
|
8 |
```{r, warning=FALSE, message=FALSE} |
|
|
9 |
library(ggplot2) |
|
|
10 |
library(ggthemes) |
|
|
11 |
library(ggsci) |
|
|
12 |
library(scales) |
|
|
13 |
library(enrichR) |
|
|
14 |
library(ggrepel) |
|
|
15 |
library(cowplot) |
|
|
16 |
library(RColorBrewer) |
|
|
17 |
``` |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
# DGE testing across COVID19 severity - linear trends |
|
|
21 |
|
|
|
22 |
Testing for a linear trend across disease severity, from healthy through to critical. |
|
|
23 |
|
|
|
24 |
```{r} |
|
|
25 |
dge.files <- list.files("~/Dropbox/COVID19/Data/Updated/DEResults.dir/", pattern="\\.L\\.csv") |
|
|
26 |
linear.dge.list <- list() |
|
|
27 |
|
|
|
28 |
for(x in seq_along(dge.files)){ |
|
|
29 |
x.csv <- read.csv(paste0("~/Dropbox/COVID19/Data/Updated/DEResults.dir/", dge.files[x]), |
|
|
30 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
31 |
x.annot <- gsub(dge.files[x], pattern="DE_(\\S*)_Severity\\.L\\.csv", replacement="\\1") |
|
|
32 |
x.csv$Sub.Annotation <- x.annot |
|
|
33 |
linear.dge.list[[dge.files[x]]] <- x.csv |
|
|
34 |
} |
|
|
35 |
|
|
|
36 |
linear.dge.df <- do.call(rbind.data.frame, linear.dge.list) |
|
|
37 |
linear.dge.df$Diff <- sign(linear.dge.df$logFC) |
|
|
38 |
linear.dge.df$Diff[linear.dge.df$FDR >= 0.01] <- 0 |
|
|
39 |
|
|
|
40 |
table(linear.dge.df$Diff, linear.dge.df$Sub.Annotation) |
|
|
41 |
``` |
|
|
42 |
|
|
|
43 |
There are variable numbers of gene DE across categories, but generally quite a small number. |
|
|
44 |
|
|
|
45 |
```{r} |
|
|
46 |
# collect all de genes for plotting |
|
|
47 |
de.genes.all <- unique(linear.dge.df$X[linear.dge.df$FDR < 0.01]) |
|
|
48 |
|
|
|
49 |
write.table(de.genes.all, |
|
|
50 |
file="~/Dropbox/COVID19/Data/Updated/DEResults.dir/ALL_linear_DEgenes.tsv", |
|
|
51 |
quote=FALSE, row.names=FALSE, sep="\t") |
|
|
52 |
``` |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
## CD4.CM |
|
|
56 |
|
|
|
57 |
```{r} |
|
|
58 |
enrich.dbs <- c("Transcription_Factor_PPIs", "MSigDB_Computational", "MSigDB_Hallmark_2020", |
|
|
59 |
"KEGG_2019_Human", "GO_Biological_Process_2018") |
|
|
60 |
``` |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
64 |
cd4.cm.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.CM"), ]$X |
|
|
65 |
cd4.cm.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.CM"), ]$FDR > 1e-3] <- "" |
|
|
66 |
|
|
|
67 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.CM"), ], |
|
|
68 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
69 |
geom_point() + |
|
|
70 |
theme_cowplot() + |
|
|
71 |
geom_text_repel(aes(label=cd4.cm.labels)) + |
|
|
72 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.CM-linear_volcano.pdf", |
|
|
73 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
74 |
NULL |
|
|
75 |
``` |
|
|
76 |
|
|
|
77 |
What are the enriched pathways amongst these genes? |
|
|
78 |
|
|
|
79 |
```{r} |
|
|
80 |
cd4.cm.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.CM") & |
|
|
81 |
linear.dge.df$FDR < 0.01 & |
|
|
82 |
linear.dge.df$logFC > 0, ]$X, |
|
|
83 |
enrich.dbs) |
|
|
84 |
|
|
|
85 |
cd4.cm.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.CM") & |
|
|
86 |
linear.dge.df$FDR < 0.01 & |
|
|
87 |
linear.dge.df$logFC < 0, ]$X, |
|
|
88 |
enrich.dbs) |
|
|
89 |
``` |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
## MSigDB 2020 enrichments |
|
|
93 |
|
|
|
94 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
95 |
cd4.msigdb.up <- cd4.cm.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
96 |
cd4.msigdb.up$Dir <- "Up" |
|
|
97 |
|
|
|
98 |
cd4.msigdb.down <- cd4.cm.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
99 |
cd4.msigdb.down$Dir <- "Down" |
|
|
100 |
|
|
|
101 |
cd4.msigdb <- do.call(rbind.data.frame, list(cd4.msigdb.up, cd4.msigdb.down)) |
|
|
102 |
cd4.msigdb$logP <- -log10(cd4.msigdb$P.value) |
|
|
103 |
cd4.msigdb$logP[cd4.msigdb$Dir %in% c("Down")] <- -1 * cd4.msigdb$logP[cd4.msigdb$Dir %in% c("Down")] |
|
|
104 |
|
|
|
105 |
ggplot(cd4.msigdb[cd4.msigdb$P.value < 0.01, ], |
|
|
106 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
107 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
108 |
geom_point() + |
|
|
109 |
coord_flip() + |
|
|
110 |
labs(x="Pathway", y="Odds Rato") + |
|
|
111 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.CM-linear_MSigDB_enriched.pdf", |
|
|
112 |
height=4.15, width=4.15, useDingbats=FALSE) + |
|
|
113 |
theme_cowplot() |
|
|
114 |
``` |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
118 |
cd4.tfppi.up <- cd4.cm.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
119 |
cd4.tfppi.up$Dir <- "Up" |
|
|
120 |
|
|
|
121 |
cd4.tfppi.down <- cd4.cm.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
122 |
cd4.tfppi.down$Dir <- "Down" |
|
|
123 |
|
|
|
124 |
cd4.tfppi <- do.call(rbind.data.frame, list(cd4.tfppi.up, cd4.tfppi.down)) |
|
|
125 |
cd4.tfppi$logP <- -log10(cd4.tfppi$P.value) |
|
|
126 |
cd4.tfppi$logP[cd4.tfppi$Dir %in% c("Down")] <- -1 * cd4.tfppi$logP[cd4.tfppi$Dir %in% c("Down")] |
|
|
127 |
|
|
|
128 |
ggplot(cd4.tfppi[cd4.tfppi$P.value < 0.01, ], |
|
|
129 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
130 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
131 |
geom_point() + |
|
|
132 |
coord_flip() + |
|
|
133 |
labs(x="Pathway", y="Odds Rato") + |
|
|
134 |
|
|
|
135 |
theme_cowplot() |
|
|
136 |
``` |
|
|
137 |
|
|
|
138 |
|
|
|
139 |
## CD4.Naive |
|
|
140 |
|
|
|
141 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
142 |
cd4.naive.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Naive"), ]$X |
|
|
143 |
cd4.naive.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Naive"), ]$FDR > 1e-3] <- "" |
|
|
144 |
|
|
|
145 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Naive"), ], |
|
|
146 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
147 |
geom_point() + |
|
|
148 |
theme_cowplot() + |
|
|
149 |
geom_text_repel(aes(label=cd4.naive.labels)) + |
|
|
150 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.Naive-linear_volcano.pdf", |
|
|
151 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
152 |
NULL |
|
|
153 |
``` |
|
|
154 |
|
|
|
155 |
What are the enriched pathways amongst these genes? |
|
|
156 |
|
|
|
157 |
```{r} |
|
|
158 |
cd4.naive.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Naive") & |
|
|
159 |
linear.dge.df$FDR < 0.01 & |
|
|
160 |
linear.dge.df$logFC > 0, ]$X, |
|
|
161 |
enrich.dbs) |
|
|
162 |
|
|
|
163 |
cd4.naive.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Naive") & |
|
|
164 |
linear.dge.df$FDR < 0.01 & |
|
|
165 |
linear.dge.df$logFC < 0, ]$X, |
|
|
166 |
enrich.dbs) |
|
|
167 |
``` |
|
|
168 |
|
|
|
169 |
|
|
|
170 |
## MSigDB 2020 enrichments |
|
|
171 |
|
|
|
172 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
173 |
cd4.naive.msigdb.up <- cd4.naive.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
174 |
cd4.naive.msigdb.up$Dir <- "Up" |
|
|
175 |
|
|
|
176 |
cd4.naive.msigdb.down <- cd4.naive.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
177 |
cd4.naive.msigdb.down$Dir <- "Down" |
|
|
178 |
|
|
|
179 |
cd4.naive.msigdb <- do.call(rbind.data.frame, list(cd4.naive.msigdb.up, cd4.naive.msigdb.down)) |
|
|
180 |
cd4.naive.msigdb$logP <- -log10(cd4.naive.msigdb$P.value) |
|
|
181 |
cd4.naive.msigdb$logP[cd4.naive.msigdb$Dir %in% c("Down")] <- -1 * cd4.naive.msigdb$logP[cd4.naive.msigdb$Dir %in% c("Down")] |
|
|
182 |
|
|
|
183 |
ggplot(cd4.naive.msigdb[cd4.naive.msigdb$P.value < 0.01, ], |
|
|
184 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
185 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
186 |
geom_point() + |
|
|
187 |
coord_flip() + |
|
|
188 |
labs(x="Pathway", y="Odds Rato") + |
|
|
189 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.Naive-linear_MSigDB_enriched.pdf", |
|
|
190 |
height=4.15, width=4.15, useDingbats=FALSE) + |
|
|
191 |
theme_cowplot() |
|
|
192 |
``` |
|
|
193 |
|
|
|
194 |
|
|
|
195 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
196 |
cd4.naive.tfppi.up <- cd4.naive.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
197 |
cd4.naive.tfppi.up$Dir <- "Up" |
|
|
198 |
|
|
|
199 |
cd4.naive.tfppi.down <- cd4.naive.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
200 |
cd4.naive.tfppi.down$Dir <- "Down" |
|
|
201 |
|
|
|
202 |
cd4.naive.tfppi <- do.call(rbind.data.frame, list(cd4.naive.tfppi.up, cd4.naive.tfppi.down)) |
|
|
203 |
cd4.naive.tfppi$logP <- -log10(cd4.naive.tfppi$P.value) |
|
|
204 |
cd4.naive.tfppi$logP[cd4.naive.tfppi$Dir %in% c("Down")] <- -1 * cd4.naive.tfppi$logP[cd4.naive.tfppi$Dir %in% c("Down")] |
|
|
205 |
|
|
|
206 |
ggplot(cd4.naive.tfppi[cd4.naive.tfppi$P.value < 0.01, ], |
|
|
207 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
208 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
209 |
geom_point() + |
|
|
210 |
coord_flip() + |
|
|
211 |
labs(x="Pathway", y="Odds Rato") + |
|
|
212 |
theme_cowplot() |
|
|
213 |
``` |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
## CD8.Naive |
|
|
218 |
|
|
|
219 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
220 |
cd8.naive.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.Naive"), ]$X |
|
|
221 |
cd8.naive.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.Naive"), ]$FDR > 1e-3] <- "" |
|
|
222 |
|
|
|
223 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.Naive"), ], |
|
|
224 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
225 |
geom_point() + |
|
|
226 |
theme_cowplot() + |
|
|
227 |
geom_text_repel(aes(label=cd8.naive.labels)) + |
|
|
228 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.Naive-linear_volcano.pdf", |
|
|
229 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
230 |
NULL |
|
|
231 |
``` |
|
|
232 |
|
|
|
233 |
What are the enriched pathways amongst these genes? |
|
|
234 |
|
|
|
235 |
```{r} |
|
|
236 |
cd8.naive.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.Naive") & |
|
|
237 |
linear.dge.df$FDR < 0.01 & |
|
|
238 |
linear.dge.df$logFC > 0, ]$X, |
|
|
239 |
enrich.dbs) |
|
|
240 |
|
|
|
241 |
cd8.naive.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.Naive") & |
|
|
242 |
linear.dge.df$FDR < 0.01 & |
|
|
243 |
linear.dge.df$logFC < 0, ]$X, |
|
|
244 |
enrich.dbs) |
|
|
245 |
``` |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
## MSigDB 2020 enrichments |
|
|
249 |
|
|
|
250 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
251 |
cd8.naive.msigdb.up <- cd8.naive.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
252 |
cd8.naive.msigdb.up$Dir <- "Up" |
|
|
253 |
|
|
|
254 |
cd8.naive.msigdb.down <- cd8.naive.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
255 |
cd8.naive.msigdb.down$Dir <- "Down" |
|
|
256 |
|
|
|
257 |
cd8.naive.msigdb <- do.call(rbind.data.frame, list(cd8.naive.msigdb.up, cd8.naive.msigdb.down)) |
|
|
258 |
cd8.naive.msigdb$logP <- -log10(cd8.naive.msigdb$P.value) |
|
|
259 |
cd8.naive.msigdb$logP[cd8.naive.msigdb$Dir %in% c("Down")] <- -1 * cd8.naive.msigdb$logP[cd8.naive.msigdb$Dir %in% c("Down")] |
|
|
260 |
|
|
|
261 |
ggplot(cd8.naive.msigdb[cd8.naive.msigdb$P.value < 0.01, ], |
|
|
262 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
263 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
264 |
geom_point() + |
|
|
265 |
coord_flip() + |
|
|
266 |
labs(x="Pathway", y="Odds Rato") + |
|
|
267 |
theme_cowplot() |
|
|
268 |
``` |
|
|
269 |
|
|
|
270 |
|
|
|
271 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
272 |
cd8.naive.tfppi.up <- cd8.naive.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
273 |
cd8.naive.tfppi.up$Dir <- "Up" |
|
|
274 |
|
|
|
275 |
cd8.naive.tfppi.down <- cd8.naive.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
276 |
cd8.naive.tfppi.down$Dir <- "Down" |
|
|
277 |
|
|
|
278 |
cd8.naive.tfppi <- do.call(rbind.data.frame, list(cd8.naive.tfppi.up, cd8.naive.tfppi.down)) |
|
|
279 |
cd8.naive.tfppi$logP <- -log10(cd8.naive.tfppi$P.value) |
|
|
280 |
cd8.naive.tfppi$logP[cd8.naive.tfppi$Dir %in% c("Down")] <- -1 * cd8.naive.tfppi$logP[cd8.naive.tfppi$Dir %in% c("Down")] |
|
|
281 |
|
|
|
282 |
ggplot(cd8.naive.tfppi[cd8.naive.tfppi$P.value < 0.01, ], |
|
|
283 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
284 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
285 |
geom_point() + |
|
|
286 |
coord_flip() + |
|
|
287 |
labs(x="Pathway", y="Odds Rato") + |
|
|
288 |
theme_cowplot() |
|
|
289 |
``` |
|
|
290 |
|
|
|
291 |
|
|
|
292 |
|
|
|
293 |
## CD8.EM |
|
|
294 |
|
|
|
295 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
296 |
cd8.em.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.EM"), ]$X |
|
|
297 |
cd8.em.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.EM"), ]$FDR > 1e-2] <- "" |
|
|
298 |
|
|
|
299 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.EM"), ], |
|
|
300 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
301 |
geom_point() + |
|
|
302 |
theme_cowplot() + |
|
|
303 |
geom_text_repel(aes(label=cd8.em.labels)) + |
|
|
304 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.EM-linear_volcano.pdf", |
|
|
305 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
306 |
NULL |
|
|
307 |
``` |
|
|
308 |
|
|
|
309 |
What are the enriched pathways amongst these genes? |
|
|
310 |
|
|
|
311 |
```{r} |
|
|
312 |
cd8.em.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.EM") & |
|
|
313 |
linear.dge.df$FDR < 0.01 & |
|
|
314 |
linear.dge.df$logFC > 0, ]$X, |
|
|
315 |
enrich.dbs) |
|
|
316 |
|
|
|
317 |
cd8.em.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.EM") & |
|
|
318 |
linear.dge.df$FDR < 0.01 & |
|
|
319 |
linear.dge.df$logFC < 0, ]$X, |
|
|
320 |
enrich.dbs) |
|
|
321 |
``` |
|
|
322 |
|
|
|
323 |
|
|
|
324 |
## MSigDB 2020 enrichments |
|
|
325 |
|
|
|
326 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
327 |
cd8.em.msigdb.up <- cd8.em.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
328 |
cd8.em.msigdb.up$Dir <- "Up" |
|
|
329 |
|
|
|
330 |
cd8.em.msigdb.down <- cd8.em.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
331 |
if(nrow(cd8.em.msigdb.down) > 0){ |
|
|
332 |
cd8.em.msigdb.down$Dir <- "Down" |
|
|
333 |
cd8.em.msigdb <- do.call(rbind.data.frame, list(cd8.em.msigdb.up, cd8.em.msigdb.down)) |
|
|
334 |
} else{ |
|
|
335 |
cd8.em.msigdb <- do.call(rbind.data.frame, list(cd8.em.msigdb.up)) |
|
|
336 |
} |
|
|
337 |
|
|
|
338 |
cd8.em.msigdb$logP <- -log10(cd8.em.msigdb$P.value) |
|
|
339 |
cd8.em.msigdb$logP[cd8.em.msigdb$Dir %in% c("Down")] <- -1 * cd8.em.msigdb$logP[cd8.em.msigdb$Dir %in% c("Down")] |
|
|
340 |
|
|
|
341 |
ggplot(cd8.em.msigdb[cd8.em.msigdb$P.value < 0.01, ], |
|
|
342 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
343 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
344 |
geom_point() + |
|
|
345 |
coord_flip() + |
|
|
346 |
labs(x="Pathway", y="Odds Rato") + |
|
|
347 |
theme_cowplot() |
|
|
348 |
``` |
|
|
349 |
|
|
|
350 |
|
|
|
351 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
352 |
cd8.em.tfppi.up <- cd8.em.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
353 |
cd8.em.tfppi.up$Dir <- "Up" |
|
|
354 |
|
|
|
355 |
cd8.em.tfppi.down <- cd8.em.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
356 |
if(nrow(cd8.em.tfppi.down) > 0){ |
|
|
357 |
cd8.em.tfppi.down$Dir <- "Down" |
|
|
358 |
cd8.em.tfppi <- do.call(rbind.data.frame, list(cd8.em.tfppi.up, cd8.em.tfppi.down)) |
|
|
359 |
} else{ |
|
|
360 |
cd8.em.tfppi <- do.call(rbind.data.frame, list(cd8.em.tfppi.up)) |
|
|
361 |
} |
|
|
362 |
cd8.em.tfppi$logP <- -log10(cd8.em.tfppi$P.value) |
|
|
363 |
cd8.em.tfppi$logP[cd8.em.tfppi$Dir %in% c("Down")] <- -1 * cd8.em.tfppi$logP[cd8.em.tfppi$Dir %in% c("Down")] |
|
|
364 |
|
|
|
365 |
ggplot(cd8.em.tfppi[cd8.em.tfppi$P.value < 0.01, ], |
|
|
366 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
367 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
368 |
geom_point() + |
|
|
369 |
coord_flip() + |
|
|
370 |
labs(x="Pathway", y="Odds Rato") + |
|
|
371 |
theme_cowplot() |
|
|
372 |
``` |
|
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
|
376 |
## CD8.TE |
|
|
377 |
|
|
|
378 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
379 |
cd8.te.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.TE"), ]$X |
|
|
380 |
cd8.te.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.TE"), ]$FDR > 1e-2] <- "" |
|
|
381 |
|
|
|
382 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.TE"), ], |
|
|
383 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
384 |
geom_point() + |
|
|
385 |
theme_cowplot() + |
|
|
386 |
geom_text_repel(aes(label=cd8.te.labels)) + |
|
|
387 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.TE-linear_volcano.pdf", |
|
|
388 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
389 |
NULL |
|
|
390 |
``` |
|
|
391 |
|
|
|
392 |
|
|
|
393 |
What are the enriched pathways amongst these genes? |
|
|
394 |
|
|
|
395 |
```{r} |
|
|
396 |
cd8.te.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.TE") & |
|
|
397 |
linear.dge.df$FDR < 0.01 & |
|
|
398 |
linear.dge.df$logFC > 0, ]$X, |
|
|
399 |
enrich.dbs) |
|
|
400 |
|
|
|
401 |
cd8.te.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD8.TE") & |
|
|
402 |
linear.dge.df$FDR < 0.01 & |
|
|
403 |
linear.dge.df$logFC < 0, ]$X, |
|
|
404 |
enrich.dbs) |
|
|
405 |
``` |
|
|
406 |
|
|
|
407 |
|
|
|
408 |
## MSigDB 2020 enrichments |
|
|
409 |
|
|
|
410 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
411 |
cd8.te.msigdb.up <- cd8.te.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
412 |
cd8.te.msigdb.up$Dir <- "Up" |
|
|
413 |
|
|
|
414 |
cd8.te.msigdb.down <- cd8.te.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
415 |
if(nrow(cd8.te.msigdb.down) > 0){ |
|
|
416 |
cd8.te.msigdb.down$Dir <- "Down" |
|
|
417 |
} |
|
|
418 |
|
|
|
419 |
cd8.te.msigdb <- do.call(rbind.data.frame, list(cd8.te.msigdb.up, cd8.te.msigdb.down)) |
|
|
420 |
cd8.te.msigdb$logP <- -log10(cd8.te.msigdb$P.value) |
|
|
421 |
cd8.te.msigdb$logP[cd8.te.msigdb$Dir %in% c("Down")] <- -1 * cd8.te.msigdb$logP[cd8.te.msigdb$Dir %in% c("Down")] |
|
|
422 |
|
|
|
423 |
ggplot(cd8.te.msigdb[cd8.te.msigdb$P.value < 0.01, ], |
|
|
424 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
425 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
426 |
geom_point() + |
|
|
427 |
coord_flip() + |
|
|
428 |
labs(x="Pathway", y="Odds Rato") + |
|
|
429 |
theme_cowplot() |
|
|
430 |
``` |
|
|
431 |
|
|
|
432 |
|
|
|
433 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
434 |
cd8.te.tfppi.up <- cd8.te.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
435 |
if(nrow(cd8.te.tfppi.up) > 0){ |
|
|
436 |
cd8.te.tfppi.up$Dir <- "Up" |
|
|
437 |
} |
|
|
438 |
|
|
|
439 |
cd8.te.tfppi.down <- cd8.te.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
440 |
if(nrow(cd8.te.tfppi.down) > 0){ |
|
|
441 |
cd8.te.tfppi.down$Dir <- "Down" |
|
|
442 |
} |
|
|
443 |
|
|
|
444 |
cd8.te.tfppi <- do.call(rbind.data.frame, list(cd8.te.tfppi.up, cd8.te.tfppi.down)) |
|
|
445 |
cd8.te.tfppi$logP <- -log10(cd8.te.tfppi$P.value) |
|
|
446 |
cd8.te.tfppi$logP[cd8.te.tfppi$Dir %in% c("Down")] <- -1 * cd8.te.tfppi$logP[cd8.te.tfppi$Dir %in% c("Down")] |
|
|
447 |
cd8.te.tfppi$Sub |
|
|
448 |
|
|
|
449 |
ggplot(cd8.te.tfppi[cd8.te.tfppi$P.value < 0.01, ], |
|
|
450 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
451 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
452 |
geom_point() + |
|
|
453 |
coord_flip() + |
|
|
454 |
labs(x="Pathway", y="Odds Rato") + |
|
|
455 |
theme_cowplot() |
|
|
456 |
``` |
|
|
457 |
|
|
|
458 |
|
|
|
459 |
|
|
|
460 |
## CD4.Tfh |
|
|
461 |
|
|
|
462 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
463 |
tfh.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ]$X |
|
|
464 |
tfh.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ]$FDR > 1e-3] <- "" |
|
|
465 |
|
|
|
466 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ], |
|
|
467 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
468 |
geom_point() + |
|
|
469 |
theme_cowplot() + |
|
|
470 |
geom_text_repel(aes(label=tfh.labels)) + |
|
|
471 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.Tfh-linear_volcano.pdf", |
|
|
472 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
473 |
NULL |
|
|
474 |
``` |
|
|
475 |
|
|
|
476 |
What are the enriched pathways amongst these genes? |
|
|
477 |
|
|
|
478 |
```{r} |
|
|
479 |
tfh.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Tfh") & |
|
|
480 |
linear.dge.df$FDR < 0.01 & |
|
|
481 |
linear.dge.df$logFC > 0, ]$X, |
|
|
482 |
enrich.dbs) |
|
|
483 |
|
|
|
484 |
tfh.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("CD4.Tfh") & |
|
|
485 |
linear.dge.df$FDR < 0.01 & |
|
|
486 |
linear.dge.df$logFC < 0, ]$X, |
|
|
487 |
enrich.dbs) |
|
|
488 |
``` |
|
|
489 |
|
|
|
490 |
|
|
|
491 |
## MSigDB 2020 enrichments |
|
|
492 |
|
|
|
493 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
494 |
tfh.msigdb.up <- tfh.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
495 |
tfh.msigdb.up$Dir <- "Up" |
|
|
496 |
|
|
|
497 |
tfh.msigdb.down <- tfh.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
498 |
if(!is.null(tfh.msigdb.down)){ |
|
|
499 |
tfh.msigdb.down$Dir <- "Down" |
|
|
500 |
|
|
|
501 |
tfh.msigdb <- do.call(rbind.data.frame, list(tfh.msigdb.up, tfh.msigdb.down)) |
|
|
502 |
} else{ |
|
|
503 |
tfh.msigdb <- do.call(rbind.data.frame, list(tfh.msigdb.up)) |
|
|
504 |
} |
|
|
505 |
tfh.msigdb$logP <- -log10(tfh.msigdb$P.value) |
|
|
506 |
tfh.msigdb$logP[tfh.msigdb$Dir %in% c("Down")] <- -1 * tfh.msigdb$logP[tfh.msigdb$Dir %in% c("Down")] |
|
|
507 |
|
|
|
508 |
ggplot(tfh.msigdb[tfh.msigdb$P.value < 0.01, ], |
|
|
509 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
510 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
511 |
geom_point() + |
|
|
512 |
coord_flip() + |
|
|
513 |
labs(x="Pathway", y="Odds Rato") + |
|
|
514 |
theme_cowplot() |
|
|
515 |
``` |
|
|
516 |
|
|
|
517 |
|
|
|
518 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
519 |
tfh.tfppi.up <- tfh.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
520 |
tfh.tfppi.up$Dir <- "Up" |
|
|
521 |
|
|
|
522 |
tfh.tfppi.down <- tfh.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
523 |
if(!is.null(tfh.tfppi.down)){ |
|
|
524 |
tfh.tfppi.down$Dir <- "Down" |
|
|
525 |
tfh.tfppi <- do.call(rbind.data.frame, list(tfh.tfppi.up, tfh.tfppi.down)) |
|
|
526 |
} else{ |
|
|
527 |
tfh.tfppi <- do.call(rbind.data.frame, list(tfh.tfppi.up)) |
|
|
528 |
} |
|
|
529 |
|
|
|
530 |
|
|
|
531 |
tfh.tfppi <- do.call(rbind.data.frame, list(tfh.tfppi.up, tfh.tfppi.down)) |
|
|
532 |
tfh.tfppi$logP <- -log10(tfh.tfppi$P.value) |
|
|
533 |
tfh.tfppi$logP[tfh.tfppi$Dir %in% c("Down")] <- -1 * tfh.tfppi$logP[tfh.tfppi$Dir %in% c("Down")] |
|
|
534 |
|
|
|
535 |
ggplot(tfh.tfppi[tfh.tfppi$P.value < 0.01, ], |
|
|
536 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
537 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
538 |
geom_point() + |
|
|
539 |
coord_flip() + |
|
|
540 |
labs(x="Pathway", y="Odds Rato") + |
|
|
541 |
theme_cowplot() |
|
|
542 |
``` |
|
|
543 |
|
|
|
544 |
|
|
|
545 |
|
|
|
546 |
## gdT |
|
|
547 |
|
|
|
548 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
549 |
gdt.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("gdT"), ]$X |
|
|
550 |
gdt.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("gdT"), ]$FDR > 1e-3] <- "" |
|
|
551 |
|
|
|
552 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("gdT"), ], |
|
|
553 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
554 |
geom_point() + |
|
|
555 |
theme_cowplot() + |
|
|
556 |
geom_text_repel(aes(label=gdt.labels)) + |
|
|
557 |
ggsave("~/Dropbox/COVID19/Updated_plots/gdT-linear_volcano.pdf", |
|
|
558 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
559 |
NULL |
|
|
560 |
``` |
|
|
561 |
|
|
|
562 |
What are the enriched pathways amongst these genes? |
|
|
563 |
|
|
|
564 |
```{r} |
|
|
565 |
gdt.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("gdT") & |
|
|
566 |
linear.dge.df$FDR < 0.01 & |
|
|
567 |
linear.dge.df$logFC > 0, ]$X, |
|
|
568 |
enrich.dbs) |
|
|
569 |
|
|
|
570 |
gdt.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("gdT") & |
|
|
571 |
linear.dge.df$FDR < 0.01 & |
|
|
572 |
linear.dge.df$logFC < 0, ]$X, |
|
|
573 |
enrich.dbs) |
|
|
574 |
``` |
|
|
575 |
|
|
|
576 |
|
|
|
577 |
## MSigDB 2020 enrichments |
|
|
578 |
|
|
|
579 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
580 |
gdt.msigdb.up <- gdt.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
581 |
if(!is.null(gdt.msigdb.up)){ |
|
|
582 |
gdt.msigdb.up$Dir <- "Up" |
|
|
583 |
} |
|
|
584 |
|
|
|
585 |
gdt.msigdb.down <- gdt.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
586 |
if(!is.null(gdt.msigdb.down)){ |
|
|
587 |
gdt.msigdb.down$Dir <- "Down" |
|
|
588 |
} |
|
|
589 |
|
|
|
590 |
if(!is.null(gdt.msigdb.up) & !is.null(gdt.msigdb.down)){ |
|
|
591 |
gdt.msigdb <- do.call(rbind.data.frame, list(gdt.msigdb.up, gdt.msigdb.down)) |
|
|
592 |
gdt.msigdb$logP <- -log10(gdt.msigdb$P.value) |
|
|
593 |
gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] <- -1 * gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] |
|
|
594 |
} else if(!is.null(gdt.msigdb.up) & is.null(gdt.msigdb.down)){ |
|
|
595 |
gdt.msigdb <- do.call(rbind.data.frame, list(gdt.msigdb.up)) |
|
|
596 |
gdt.msigdb$logP <- -log10(gdt.msigdb$P.value) |
|
|
597 |
gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] <- -1 * gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] |
|
|
598 |
} else if(is.null(gdt.msigdb.up) & !is.null(gdt.msigdb.down)){ |
|
|
599 |
gdt.msigdb <- do.call(rbind.data.frame, list(gdt.msigdb.down)) |
|
|
600 |
gdt.msigdb$logP <- -log10(gdt.msigdb$P.value) |
|
|
601 |
gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] <- -1 * gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] |
|
|
602 |
} else{ |
|
|
603 |
gdt.msigdb <- NULL |
|
|
604 |
} |
|
|
605 |
|
|
|
606 |
if(!is.null(gdt.msigdb)){ |
|
|
607 |
ggplot(gdt.msigdb[gdt.msigdb$P.value < 0.01, ], |
|
|
608 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
609 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
610 |
geom_point() + |
|
|
611 |
coord_flip() + |
|
|
612 |
labs(x="Pathway", y="Odds Rato") + |
|
|
613 |
theme_cowplot() |
|
|
614 |
} |
|
|
615 |
``` |
|
|
616 |
|
|
|
617 |
|
|
|
618 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
619 |
gdt.tfppi.up <- gdt.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
620 |
gdt.tfppi.up$Dir <- "Up" |
|
|
621 |
|
|
|
622 |
gdt.tfppi.down <- gdt.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
623 |
if(!is.null(gdt.tfppi.down)){ |
|
|
624 |
gdt.tfppi.down$Dir <- "Down" |
|
|
625 |
|
|
|
626 |
gdt.tfppi <- do.call(rbind.data.frame, list(gdt.tfppi.up, gdt.tfppi.down)) |
|
|
627 |
gdt.tfppi$logP <- -log10(gdt.tfppi$P.value) |
|
|
628 |
gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] <- -1 * gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] |
|
|
629 |
} else{ |
|
|
630 |
gdt.tfppi <- do.call(rbind.data.frame, list(gdt.tfppi.up)) |
|
|
631 |
gdt.tfppi$logP <- -log10(gdt.tfppi$P.value) |
|
|
632 |
gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] <- -1 * gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] |
|
|
633 |
} |
|
|
634 |
|
|
|
635 |
ggplot(gdt.tfppi[gdt.tfppi$P.value < 0.01, ], |
|
|
636 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
637 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
638 |
geom_point() + |
|
|
639 |
coord_flip() + |
|
|
640 |
labs(x="Pathway", y="Odds Rato") + |
|
|
641 |
theme_cowplot() |
|
|
642 |
``` |
|
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
|
646 |
|
|
|
647 |
## MAIT |
|
|
648 |
|
|
|
649 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
650 |
mait.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("MAIT"), ]$X |
|
|
651 |
mait.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("MAIT"), ]$FDR > 1e-3] <- "" |
|
|
652 |
|
|
|
653 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("MAIT"), ], |
|
|
654 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
655 |
geom_point() + |
|
|
656 |
theme_cowplot() + |
|
|
657 |
geom_text_repel(aes(label=mait.labels)) + |
|
|
658 |
ggsave("~/Dropbox/COVID19/Updated_plots/MAIT-linear_volcano.pdf", |
|
|
659 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
660 |
NULL |
|
|
661 |
``` |
|
|
662 |
|
|
|
663 |
What are the enriched pathways amongst these genes? |
|
|
664 |
|
|
|
665 |
```{r} |
|
|
666 |
mait.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("MAIT") & |
|
|
667 |
linear.dge.df$FDR < 0.01 & |
|
|
668 |
linear.dge.df$logFC > 0, ]$X, |
|
|
669 |
enrich.dbs) |
|
|
670 |
|
|
|
671 |
mait.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("MAIT") & |
|
|
672 |
linear.dge.df$FDR < 0.01 & |
|
|
673 |
linear.dge.df$logFC < 0, ]$X, |
|
|
674 |
enrich.dbs) |
|
|
675 |
``` |
|
|
676 |
|
|
|
677 |
|
|
|
678 |
## MSigDB 2020 enrichments |
|
|
679 |
|
|
|
680 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
681 |
mait.msigdb.up <- mait.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
682 |
if(!is.null(mait.msigdb.up)){ |
|
|
683 |
mait.msigdb.up$Dir <- "Up" |
|
|
684 |
} |
|
|
685 |
|
|
|
686 |
mait.msigdb.down <- mait.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
687 |
if(!is.null(mait.msigdb.down)){ |
|
|
688 |
mait.msigdb.down$Dir <- "Down" |
|
|
689 |
} |
|
|
690 |
if(!is.null(mait.msigdb.down) & !is.null(mait.msigdb.up)){ |
|
|
691 |
mait.msigdb <- do.call(rbind.data.frame, list(mait.msigdb.up, mait.msigdb.down)) |
|
|
692 |
} else if(is.null(mait.msigdb.down) & !is.null(mait.msigdb.up)){ |
|
|
693 |
mait.msigdb <- do.call(rbind.data.frame, list(mait.msigdb.up)) |
|
|
694 |
} else if(!is.null(mait.msigdb.down) & is.null(mait.msigdb.up)){ |
|
|
695 |
mait.msigdb <- do.call(rbind.data.frame, list(mait.msigdb.down)) |
|
|
696 |
} |
|
|
697 |
|
|
|
698 |
mait.msigdb$logP <- -log10(mait.msigdb$P.value) |
|
|
699 |
mait.msigdb$logP[mait.msigdb$Dir %in% c("Down")] <- -1 * mait.msigdb$logP[mait.msigdb$Dir %in% c("Down")] |
|
|
700 |
|
|
|
701 |
ggplot(mait.msigdb[mait.msigdb$P.value < 0.01, ], |
|
|
702 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
703 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
704 |
geom_point() + |
|
|
705 |
coord_flip() + |
|
|
706 |
labs(x="Pathway", y="Odds Rato") + |
|
|
707 |
theme_cowplot() |
|
|
708 |
``` |
|
|
709 |
|
|
|
710 |
|
|
|
711 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
712 |
mait.tfppi.up <- mait.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
713 |
if(!is.null(mait.tfppi.up)){ |
|
|
714 |
mait.tfppi.up$Dir <- "Up" |
|
|
715 |
} |
|
|
716 |
|
|
|
717 |
mait.tfppi.down <- mait.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
718 |
if(!is.null(mait.tfppi.down)){ |
|
|
719 |
mait.tfppi.down$Dir <- "Down" |
|
|
720 |
} |
|
|
721 |
|
|
|
722 |
if(!is.null(mait.tfppi.up) & !is.null(mait.tfppi.down)){ |
|
|
723 |
mait.tfppi <- do.call(rbind.data.frame, list(mait.tfppi.up, mait.tfppi.down)) |
|
|
724 |
} else if(!is.null(mait.tfppi.up) & is.null(mait.tfppi.down)){ |
|
|
725 |
mait.tfppi <- do.call(rbind.data.frame, list(mait.tfppi.up)) |
|
|
726 |
} else if(is.null(mait.tfppi.up) & !is.null(mait.tfppi.down)){ |
|
|
727 |
mait.tfppi <- do.call(rbind.data.frame, list(mait.tfppi.down)) |
|
|
728 |
} |
|
|
729 |
|
|
|
730 |
mait.tfppi$logP <- -log10(mait.tfppi$P.value) |
|
|
731 |
mait.tfppi$logP[mait.tfppi$Dir %in% c("Down")] <- -1 * mait.tfppi$logP[mait.tfppi$Dir %in% c("Down")] |
|
|
732 |
|
|
|
733 |
ggplot(mait.tfppi[mait.tfppi$P.value < 0.01, ], |
|
|
734 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
735 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
736 |
geom_point() + |
|
|
737 |
coord_flip() + |
|
|
738 |
labs(x="Pathway", y="Odds Rato") + |
|
|
739 |
theme_cowplot() |
|
|
740 |
``` |
|
|
741 |
|
|
|
742 |
|
|
|
743 |
|
|
|
744 |
## Treg |
|
|
745 |
|
|
|
746 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
747 |
treg.labels <- linear.dge.df[linear.dge.df$Sub.Annotation %in% c("Treg"), ]$X |
|
|
748 |
treg.labels[linear.dge.df[linear.dge.df$Sub.Annotation %in% c("Treg"), ]$FDR > 1e-3] <- "" |
|
|
749 |
|
|
|
750 |
ggplot(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("Treg"), ], |
|
|
751 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
752 |
geom_point() + |
|
|
753 |
theme_cowplot() + |
|
|
754 |
geom_text_repel(aes(label=treg.labels)) + |
|
|
755 |
ggsave("~/Dropbox/COVID19/Updated_plots/Treg-linear_volcano.pdf", |
|
|
756 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
757 |
NULL |
|
|
758 |
``` |
|
|
759 |
|
|
|
760 |
What are the enriched pathways amongst these genes? |
|
|
761 |
|
|
|
762 |
```{r} |
|
|
763 |
treg.enriched.up <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("Treg") & |
|
|
764 |
linear.dge.df$FDR < 0.01 & |
|
|
765 |
linear.dge.df$logFC > 0, ]$X, |
|
|
766 |
enrich.dbs) |
|
|
767 |
|
|
|
768 |
treg.enriched.down <- enrichr(linear.dge.df[linear.dge.df$Sub.Annotation %in% c("Treg") & |
|
|
769 |
linear.dge.df$FDR < 0.01 & |
|
|
770 |
linear.dge.df$logFC < 0, ]$X, |
|
|
771 |
enrich.dbs) |
|
|
772 |
``` |
|
|
773 |
|
|
|
774 |
|
|
|
775 |
## MSigDB 2020 enrichments |
|
|
776 |
|
|
|
777 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
778 |
treg.msigdb.up <- treg.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
779 |
treg.msigdb.up$Dir <- "Up" |
|
|
780 |
|
|
|
781 |
treg.msigdb.down <- treg.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
782 |
if(!is.null(treg.msigdb.down)){ |
|
|
783 |
treg.msigdb.down$Dir <- "Down" |
|
|
784 |
} |
|
|
785 |
|
|
|
786 |
treg.msigdb <- do.call(rbind.data.frame, list(treg.msigdb.up, treg.msigdb.down)) |
|
|
787 |
treg.msigdb$logP <- -log10(treg.msigdb$P.value) |
|
|
788 |
treg.msigdb$logP[treg.msigdb$Dir %in% c("Down")] <- -1 * treg.msigdb$logP[treg.msigdb$Dir %in% c("Down")] |
|
|
789 |
|
|
|
790 |
ggplot(treg.msigdb[treg.msigdb$P.value < 0.01, ], |
|
|
791 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
792 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
793 |
geom_point() + |
|
|
794 |
coord_flip() + |
|
|
795 |
labs(x="Pathway", y="Odds Rato") + |
|
|
796 |
theme_cowplot() |
|
|
797 |
``` |
|
|
798 |
|
|
|
799 |
|
|
|
800 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
801 |
treg.tfppi.up <- treg.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
802 |
treg.tfppi.up$Dir <- "Up" |
|
|
803 |
|
|
|
804 |
treg.tfppi.down <- treg.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
805 |
if(!is.null(treg.tfppi.down)){ |
|
|
806 |
treg.tfppi.down$Dir <- "Down" |
|
|
807 |
} |
|
|
808 |
|
|
|
809 |
treg.tfppi <- do.call(rbind.data.frame, list(treg.tfppi.up, treg.tfppi.down)) |
|
|
810 |
treg.tfppi$logP <- -log10(treg.tfppi$P.value) |
|
|
811 |
treg.tfppi$logP[treg.tfppi$Dir %in% c("Down")] <- -1 * treg.tfppi$logP[treg.tfppi$Dir %in% c("Down")] |
|
|
812 |
|
|
|
813 |
ggplot(treg.tfppi[treg.tfppi$P.value < 0.01, ], |
|
|
814 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
815 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
816 |
geom_point() + |
|
|
817 |
coord_flip() + |
|
|
818 |
labs(x="Pathway", y="Odds Rato") + |
|
|
819 |
theme_cowplot() |
|
|
820 |
``` |
|
|
821 |
|
|
|
822 |
|
|
|
823 |
Aggregate all results from the linear trend analysis. |
|
|
824 |
|
|
|
825 |
```{r} |
|
|
826 |
cd4.msigdb$Sub.Annotation <- "CD4.CM" |
|
|
827 |
cd4.naive.msigdb$Sub.Annotation <- "CD4.Naive" |
|
|
828 |
cd8.naive.msigdb$Sub.Annotation <- "CD8.Naive" |
|
|
829 |
cd8.em.msigdb$Sub.Annotation <- "CD8.EM" |
|
|
830 |
cd8.te.msigdb$Sub.Annotation <- "CD8.TE" |
|
|
831 |
tfh.msigdb$Sub.Annotation <- "CD4.Tfh" |
|
|
832 |
# treg.msigdb$Sub.Annotation <- "Treg" |
|
|
833 |
mait.msigdb$Sub.Annotation <- "MAIT" |
|
|
834 |
# gdt.msigdb$Sub.Annotation <- "gdT" |
|
|
835 |
|
|
|
836 |
msigdb.linear.enrichments <- list(cd4.msigdb, cd4.naive.msigdb, cd8.naive.msigdb, cd8.em.msigdb, cd8.te.msigdb, |
|
|
837 |
tfh.msigdb, mait.msigdb) |
|
|
838 |
|
|
|
839 |
msigdb.linear.enrich.df <- do.call(rbind.data.frame, |
|
|
840 |
msigdb.linear.enrichments) |
|
|
841 |
``` |
|
|
842 |
|
|
|
843 |
```{r} |
|
|
844 |
cell.order <- c("CD4.Naive", "CD4.CM", "CD4.EM", "CD4.IL22", "CD4.Prolif", "CD4.Th1", "CD4.Th2", "CD4.Th17", "CD4.Tfh", |
|
|
845 |
"Treg", "CD8.Naive", "CD8.Activated", "CD8.Prolif", "CD8.CM", "CD8.TE", "CD8.EM", "gdT", "MAIT", "NKT") |
|
|
846 |
|
|
|
847 |
all.qual.cols <- brewer.pal.info[brewer.pal.info$category %in% c("qual") & brewer.pal.info$colorblind, ] |
|
|
848 |
col_vector = unlist(mapply(brewer.pal, all.qual.cols$maxcolors, rownames(all.qual.cols))) |
|
|
849 |
|
|
|
850 |
# cell.cols <- col_vector[c(1:7, 9:19)] |
|
|
851 |
cell.cols <- col_vector[c(1:17, 19, 20)] |
|
|
852 |
names(cell.cols) <- cell.order |
|
|
853 |
``` |
|
|
854 |
|
|
|
855 |
|
|
|
856 |
```{r, fig.height=5.95, fig.width=6.95} |
|
|
857 |
ggplot(msigdb.linear.enrich.df[msigdb.linear.enrich.df$P.value < 0.01, ], |
|
|
858 |
aes(x=reorder(Term, logP), y=logP, colour=Sub.Annotation)) + |
|
|
859 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
860 |
geom_point(size=3.5, shape=18) + |
|
|
861 |
scale_colour_manual(values=cell.cols) + |
|
|
862 |
#facet_wrap(~Term, scales="free_y", ncol=1) + |
|
|
863 |
labs(x="Pathway", y="Odds Rato") + |
|
|
864 |
guides(colour=guide_legend(title="Cell Type", override.aes=list(size=5, shape=18))) + |
|
|
865 |
theme_cowplot() + |
|
|
866 |
coord_flip() + |
|
|
867 |
theme(panel.spacing=unit(0, "lines"), |
|
|
868 |
strip.text=element_blank(), |
|
|
869 |
strip.background=element_blank()) + |
|
|
870 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell-linear_MSigDB_enriched.pdf", |
|
|
871 |
height=5.95, width=6.95, useDingbats=FALSE) + |
|
|
872 |
NULL |
|
|
873 |
``` |
|
|
874 |
|
|
|
875 |
And for the enriched TFs. Aggregate all results from the linear trend analysis. |
|
|
876 |
|
|
|
877 |
```{r} |
|
|
878 |
cd4.tfppi$Sub.Annotation <- "CD4.CM" |
|
|
879 |
cd4.naive.tfppi$Sub.Annotation <- "CD4.Naive" |
|
|
880 |
cd8.naive.tfppi$Sub.Annotation <- "CD8.Naive" |
|
|
881 |
cd8.em.tfppi$Sub.Annotation <- "CD8.EM" |
|
|
882 |
cd8.te.tfppi$Sub.Annotation <- "CD8.TE" |
|
|
883 |
tfh.tfppi$Sub.Annotation <- "CD4.Tfh" |
|
|
884 |
# treg.tfppi$Sub.Annotation <- "Treg" |
|
|
885 |
mait.tfppi$Sub.Annotation <- "MAIT" |
|
|
886 |
# gdt.tfppi$Sub.Annotation <- "gdT" |
|
|
887 |
|
|
|
888 |
tfppi.linear.enrichments <- list(cd4.tfppi, cd4.naive.tfppi, cd8.naive.tfppi, cd8.em.tfppi, cd8.te.tfppi, |
|
|
889 |
tfh.tfppi, mait.tfppi) |
|
|
890 |
|
|
|
891 |
tfppi.linear.enrich.df <- do.call(rbind.data.frame, |
|
|
892 |
tfppi.linear.enrichments) |
|
|
893 |
``` |
|
|
894 |
|
|
|
895 |
|
|
|
896 |
```{r, fig.height=8.95, fig.width=6.95} |
|
|
897 |
ggplot(tfppi.linear.enrich.df[tfppi.linear.enrich.df$P.value < 0.01, ], |
|
|
898 |
aes(x=reorder(Term, logP), y=logP, colour=Sub.Annotation)) + |
|
|
899 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
900 |
geom_point(size=3.5, shape=18) + |
|
|
901 |
scale_colour_manual(values=cell.cols) + |
|
|
902 |
#facet_wrap(~Term, scales="free_y", ncol=1) + |
|
|
903 |
labs(x="Pathway", y="Odds Rato") + |
|
|
904 |
guides(colour=guide_legend(title="Cell Type", override.aes=list(size=5, shape=18))) + |
|
|
905 |
theme_cowplot() + |
|
|
906 |
coord_flip() + |
|
|
907 |
theme(panel.spacing=unit(0, "lines"), |
|
|
908 |
strip.text=element_blank(), |
|
|
909 |
strip.background=element_blank()) + |
|
|
910 |
ggsave("~/Dropbox/COVID19/Updated_plots/Tcell-linear_TFPPI_enriched.pdf", |
|
|
911 |
height=5.95, width=6.95, useDingbats=FALSE) + |
|
|
912 |
NULL |
|
|
913 |
``` |
|
|
914 |
|
|
|
915 |
|
|
|
916 |
|
|
|
917 |
# DGE testing across COVID19 severity - quadratic trends |
|
|
918 |
|
|
|
919 |
As the model above, but testing for a linear trend across disease severity, from healthy through to critical. |
|
|
920 |
|
|
|
921 |
```{r} |
|
|
922 |
dge.files <- list.files("~/Dropbox/COVID19/Data/Updated/DEResults.dir/", pattern="\\.Q\\.csv") |
|
|
923 |
quadratic.dge.list <- list() |
|
|
924 |
|
|
|
925 |
for(x in seq_along(dge.files)){ |
|
|
926 |
x.csv <- read.csv(paste0("~/Dropbox/COVID19/Data/Updated/DEResults.dir/", dge.files[x]), |
|
|
927 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
928 |
x.annot <- gsub(dge.files[x], pattern="DE_(\\S*)_Severity\\.Q\\.csv", replacement="\\1") |
|
|
929 |
x.csv$Sub.Annotation <- x.annot |
|
|
930 |
quadratic.dge.list[[dge.files[x]]] <- x.csv |
|
|
931 |
} |
|
|
932 |
|
|
|
933 |
quadratic.dge.df <- do.call(rbind.data.frame, quadratic.dge.list) |
|
|
934 |
quadratic.dge.df$Diff <- sign(quadratic.dge.df$logFC) |
|
|
935 |
quadratic.dge.df$Diff[quadratic.dge.df$FDR >= 0.01] <- 0 |
|
|
936 |
|
|
|
937 |
table(quadratic.dge.df$Diff, quadratic.dge.df$Sub.Annotation) |
|
|
938 |
``` |
|
|
939 |
|
|
|
940 |
|
|
|
941 |
There are variable numbers of gene DE across categories, but generally quite a small number. Somehow this doesn't feel right... |
|
|
942 |
|
|
|
943 |
## CD4.CM |
|
|
944 |
|
|
|
945 |
```{r} |
|
|
946 |
enrich.dbs <- c("Transcription_Factor_PPIs", "MSigDB_Computational", "MSigDB_Hallmark_2020", |
|
|
947 |
"UK_Biobank_GWAS_v1", "KEGG_2019_Human", "GO_Biological_Process_2018") |
|
|
948 |
``` |
|
|
949 |
|
|
|
950 |
|
|
|
951 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
952 |
cd4.cm.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.CM"), ]$X |
|
|
953 |
cd4.cm.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.CM"), ]$FDR > 1e-3] <- "" |
|
|
954 |
|
|
|
955 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.CM"), ], |
|
|
956 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
957 |
geom_point() + |
|
|
958 |
theme_cowplot() + |
|
|
959 |
geom_text_repel(aes(label=cd4.cm.labels)) + |
|
|
960 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.CM-quadratic_volcano.pdf", |
|
|
961 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
962 |
NULL |
|
|
963 |
``` |
|
|
964 |
|
|
|
965 |
What are the enriched pathways amongst these genes? |
|
|
966 |
|
|
|
967 |
```{r} |
|
|
968 |
cd4.cm.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.CM") & |
|
|
969 |
quadratic.dge.df$FDR < 0.01 & |
|
|
970 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
971 |
enrich.dbs) |
|
|
972 |
|
|
|
973 |
cd4.cm.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.CM") & |
|
|
974 |
quadratic.dge.df$FDR < 0.01 & |
|
|
975 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
976 |
enrich.dbs) |
|
|
977 |
``` |
|
|
978 |
|
|
|
979 |
|
|
|
980 |
## MSigDB 2020 enrichments |
|
|
981 |
|
|
|
982 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
983 |
cd4.msigdb.up <- cd4.cm.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
984 |
cd4.msigdb.up$Dir <- "Up" |
|
|
985 |
|
|
|
986 |
cd4.msigdb.down <- cd4.cm.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
987 |
cd4.msigdb.down$Dir <- "Down" |
|
|
988 |
|
|
|
989 |
cd4.msigdb <- do.call(rbind.data.frame, list(cd4.msigdb.up, cd4.msigdb.down)) |
|
|
990 |
cd4.msigdb$logP <- -log10(cd4.msigdb$P.value) |
|
|
991 |
cd4.msigdb$logP[cd4.msigdb$Dir %in% c("Down")] <- -1 * cd4.msigdb$logP[cd4.msigdb$Dir %in% c("Down")] |
|
|
992 |
|
|
|
993 |
ggplot(cd4.msigdb[cd4.msigdb$P.value < 0.01, ], |
|
|
994 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
995 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
996 |
geom_point() + |
|
|
997 |
coord_flip() + |
|
|
998 |
labs(x="Pathway", y="Odds Rato") + |
|
|
999 |
theme_cowplot() |
|
|
1000 |
``` |
|
|
1001 |
|
|
|
1002 |
|
|
|
1003 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1004 |
cd4.tfppi.up <- cd4.cm.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1005 |
cd4.tfppi.up$Dir <- "Up" |
|
|
1006 |
|
|
|
1007 |
cd4.tfppi.down <- cd4.cm.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1008 |
cd4.tfppi.down$Dir <- "Down" |
|
|
1009 |
|
|
|
1010 |
cd4.tfppi <- do.call(rbind.data.frame, list(cd4.tfppi.up, cd4.tfppi.down)) |
|
|
1011 |
cd4.tfppi$logP <- -log10(cd4.tfppi$P.value) |
|
|
1012 |
cd4.tfppi$logP[cd4.tfppi$Dir %in% c("Down")] <- -1 * cd4.tfppi$logP[cd4.tfppi$Dir %in% c("Down")] |
|
|
1013 |
|
|
|
1014 |
ggplot(cd4.tfppi[cd4.tfppi$P.value < 0.01, ], |
|
|
1015 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1016 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1017 |
geom_point() + |
|
|
1018 |
coord_flip() + |
|
|
1019 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1020 |
theme_cowplot() |
|
|
1021 |
``` |
|
|
1022 |
|
|
|
1023 |
|
|
|
1024 |
## CD4.Naive |
|
|
1025 |
|
|
|
1026 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1027 |
cd4.naive.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Naive"), ]$X |
|
|
1028 |
cd4.naive.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Naive"), ]$FDR > 1e-3] <- "" |
|
|
1029 |
|
|
|
1030 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Naive"), ], |
|
|
1031 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1032 |
geom_point() + |
|
|
1033 |
theme_cowplot() + |
|
|
1034 |
geom_text_repel(aes(label=cd4.naive.labels)) + |
|
|
1035 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.Naive-quadratic_volcano.pdf", |
|
|
1036 |
height=3.95, width=4.95, useDingbat=FALSE) + |
|
|
1037 |
NULL |
|
|
1038 |
``` |
|
|
1039 |
|
|
|
1040 |
What are the enriched pathways amongst these genes? |
|
|
1041 |
|
|
|
1042 |
```{r} |
|
|
1043 |
cd4.naive.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Naive") & |
|
|
1044 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1045 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1046 |
enrich.dbs) |
|
|
1047 |
|
|
|
1048 |
cd4.naive.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Naive") & |
|
|
1049 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1050 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1051 |
enrich.dbs) |
|
|
1052 |
``` |
|
|
1053 |
|
|
|
1054 |
|
|
|
1055 |
## MSigDB 2020 enrichments |
|
|
1056 |
|
|
|
1057 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1058 |
cd4.naive.msigdb.up <- cd4.naive.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1059 |
cd4.naive.msigdb.up$Dir <- "Up" |
|
|
1060 |
|
|
|
1061 |
cd4.naive.msigdb.down <- cd4.naive.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1062 |
cd4.naive.msigdb.down$Dir <- "Down" |
|
|
1063 |
|
|
|
1064 |
cd4.naive.msigdb <- do.call(rbind.data.frame, list(cd4.naive.msigdb.up, cd4.naive.msigdb.down)) |
|
|
1065 |
cd4.naive.msigdb$logP <- -log10(cd4.naive.msigdb$P.value) |
|
|
1066 |
cd4.naive.msigdb$logP[cd4.naive.msigdb$Dir %in% c("Down")] <- -1 * cd4.naive.msigdb$logP[cd4.naive.msigdb$Dir %in% c("Down")] |
|
|
1067 |
|
|
|
1068 |
ggplot(cd4.naive.msigdb[cd4.naive.msigdb$P.value < 0.01, ], |
|
|
1069 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1070 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1071 |
geom_point() + |
|
|
1072 |
coord_flip() + |
|
|
1073 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1074 |
theme_cowplot() |
|
|
1075 |
``` |
|
|
1076 |
|
|
|
1077 |
|
|
|
1078 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1079 |
cd4.naive.tfppi.up <- cd4.naive.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1080 |
cd4.naive.tfppi.up$Dir <- "Up" |
|
|
1081 |
|
|
|
1082 |
cd4.naive.tfppi.down <- cd4.naive.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1083 |
cd4.naive.tfppi.down$Dir <- "Down" |
|
|
1084 |
|
|
|
1085 |
cd4.naive.tfppi <- do.call(rbind.data.frame, list(cd4.naive.tfppi.up, cd4.naive.tfppi.down)) |
|
|
1086 |
cd4.naive.tfppi$logP <- -log10(cd4.naive.tfppi$P.value) |
|
|
1087 |
cd4.naive.tfppi$logP[cd4.naive.tfppi$Dir %in% c("Down")] <- -1 * cd4.naive.tfppi$logP[cd4.naive.tfppi$Dir %in% c("Down")] |
|
|
1088 |
|
|
|
1089 |
ggplot(cd4.naive.tfppi[cd4.naive.tfppi$P.value < 0.01, ], |
|
|
1090 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1091 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1092 |
geom_point() + |
|
|
1093 |
coord_flip() + |
|
|
1094 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1095 |
theme_cowplot() |
|
|
1096 |
``` |
|
|
1097 |
|
|
|
1098 |
|
|
|
1099 |
|
|
|
1100 |
## CD8.Naive |
|
|
1101 |
|
|
|
1102 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1103 |
cd8.naive.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.Naive"), ]$X |
|
|
1104 |
cd8.naive.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.Naive"), ]$FDR > 1e-3] <- "" |
|
|
1105 |
|
|
|
1106 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.Naive"), ], |
|
|
1107 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1108 |
geom_point() + |
|
|
1109 |
theme_cowplot() + |
|
|
1110 |
geom_text_repel(aes(label=cd8.naive.labels)) + |
|
|
1111 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.Naive-quadratic_volcano.pdf", |
|
|
1112 |
height=3.95, width=4.95, useDingbat=FALSE) + |
|
|
1113 |
NULL |
|
|
1114 |
``` |
|
|
1115 |
|
|
|
1116 |
What are the enriched pathways amongst these genes? |
|
|
1117 |
|
|
|
1118 |
```{r} |
|
|
1119 |
cd8.naive.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.Naive") & |
|
|
1120 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1121 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1122 |
enrich.dbs) |
|
|
1123 |
|
|
|
1124 |
cd8.naive.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.Naive") & |
|
|
1125 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1126 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1127 |
enrich.dbs) |
|
|
1128 |
``` |
|
|
1129 |
|
|
|
1130 |
|
|
|
1131 |
## MSigDB 2020 enrichments |
|
|
1132 |
|
|
|
1133 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1134 |
cd8.naive.msigdb.up <- cd8.naive.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1135 |
cd8.naive.msigdb.up$Dir <- "Up" |
|
|
1136 |
|
|
|
1137 |
cd8.naive.msigdb.down <- cd8.naive.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1138 |
cd8.naive.msigdb.down$Dir <- "Down" |
|
|
1139 |
|
|
|
1140 |
cd8.naive.msigdb <- do.call(rbind.data.frame, list(cd8.naive.msigdb.up, cd8.naive.msigdb.down)) |
|
|
1141 |
cd8.naive.msigdb$logP <- -log10(cd8.naive.msigdb$P.value) |
|
|
1142 |
cd8.naive.msigdb$logP[cd8.naive.msigdb$Dir %in% c("Down")] <- -1 * cd8.naive.msigdb$logP[cd8.naive.msigdb$Dir %in% c("Down")] |
|
|
1143 |
|
|
|
1144 |
ggplot(cd8.naive.msigdb[cd8.naive.msigdb$P.value < 0.01, ], |
|
|
1145 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1146 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1147 |
geom_point() + |
|
|
1148 |
coord_flip() + |
|
|
1149 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1150 |
theme_cowplot() |
|
|
1151 |
``` |
|
|
1152 |
|
|
|
1153 |
|
|
|
1154 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1155 |
cd8.naive.tfppi.up <- cd8.naive.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1156 |
cd8.naive.tfppi.up$Dir <- "Up" |
|
|
1157 |
|
|
|
1158 |
cd8.naive.tfppi.down <- cd8.naive.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1159 |
cd8.naive.tfppi.down$Dir <- "Down" |
|
|
1160 |
|
|
|
1161 |
cd8.naive.tfppi <- do.call(rbind.data.frame, list(cd8.naive.tfppi.up, cd8.naive.tfppi.down)) |
|
|
1162 |
cd8.naive.tfppi$logP <- -log10(cd8.naive.tfppi$P.value) |
|
|
1163 |
cd8.naive.tfppi$logP[cd8.naive.tfppi$Dir %in% c("Down")] <- -1 * cd8.naive.tfppi$logP[cd8.naive.tfppi$Dir %in% c("Down")] |
|
|
1164 |
|
|
|
1165 |
ggplot(cd8.naive.tfppi[cd8.naive.tfppi$P.value < 0.01, ], |
|
|
1166 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1167 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1168 |
geom_point() + |
|
|
1169 |
coord_flip() + |
|
|
1170 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1171 |
theme_cowplot() |
|
|
1172 |
``` |
|
|
1173 |
|
|
|
1174 |
|
|
|
1175 |
|
|
|
1176 |
## CD8.EM |
|
|
1177 |
|
|
|
1178 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1179 |
cd8.em.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.EM"), ]$X |
|
|
1180 |
cd8.em.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.EM"), ]$FDR > 1e-3] <- "" |
|
|
1181 |
|
|
|
1182 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.EM"), ], |
|
|
1183 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1184 |
geom_point() + |
|
|
1185 |
theme_cowplot() + |
|
|
1186 |
geom_text_repel(aes(label=cd8.em.labels)) + |
|
|
1187 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.CEMquadratic_volcano.pdf", |
|
|
1188 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1189 |
NULL |
|
|
1190 |
``` |
|
|
1191 |
|
|
|
1192 |
What are the enriched pathways amongst these genes? |
|
|
1193 |
|
|
|
1194 |
```{r} |
|
|
1195 |
cd8.em.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.EM") & |
|
|
1196 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1197 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1198 |
enrich.dbs) |
|
|
1199 |
|
|
|
1200 |
cd8.em.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.EM") & |
|
|
1201 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1202 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1203 |
enrich.dbs) |
|
|
1204 |
``` |
|
|
1205 |
|
|
|
1206 |
|
|
|
1207 |
## MSigDB 2020 enrichments |
|
|
1208 |
|
|
|
1209 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1210 |
|
|
|
1211 |
cd8.em.msigdb.up <- cd8.em.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1212 |
if(!is.null(cd8.em.msigdb.up)){ |
|
|
1213 |
cd8.em.msigdb.up$Dir <- "Up" |
|
|
1214 |
|
|
|
1215 |
cd8.em.msigdb.down <- cd8.em.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1216 |
cd8.em.msigdb.down$Dir <- "Down" |
|
|
1217 |
|
|
|
1218 |
cd8.em.msigdb <- do.call(rbind.data.frame, list(cd8.em.msigdb.up, cd8.em.msigdb.down)) |
|
|
1219 |
} else{ |
|
|
1220 |
cd8.em.msigdb.down <- cd8.em.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1221 |
cd8.em.msigdb.down$Dir <- "Down" |
|
|
1222 |
|
|
|
1223 |
cd8.em.msigdb <- do.call(rbind.data.frame, list(cd8.em.msigdb.up, cd8.em.msigdb.down)) |
|
|
1224 |
} |
|
|
1225 |
cd8.em.msigdb$logP <- -log10(cd8.em.msigdb$P.value) |
|
|
1226 |
cd8.em.msigdb$logP[cd8.em.msigdb$Dir %in% c("Down")] <- -1 * cd8.em.msigdb$logP[cd8.em.msigdb$Dir %in% c("Down")] |
|
|
1227 |
|
|
|
1228 |
ggplot(cd8.em.msigdb[cd8.em.msigdb$P.value < 0.01, ], |
|
|
1229 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1230 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1231 |
geom_point() + |
|
|
1232 |
coord_flip() + |
|
|
1233 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1234 |
theme_cowplot() |
|
|
1235 |
``` |
|
|
1236 |
|
|
|
1237 |
|
|
|
1238 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1239 |
cd8.em.tfppi.up <- cd8.em.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1240 |
if(!is.null(cd8.em.tfppi.up)){ |
|
|
1241 |
cd8.em.tfppi.up$Dir <- "Up" |
|
|
1242 |
|
|
|
1243 |
cd8.em.tfppi.down <- cd8.em.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1244 |
|
|
|
1245 |
cd8.em.tfppi.down$Dir <- "Down" |
|
|
1246 |
|
|
|
1247 |
cd8.em.tfppi <- do.call(rbind.data.frame, list(cd8.em.tfppi.up, cd8.em.tfppi.down)) |
|
|
1248 |
} else{ |
|
|
1249 |
cd8.em.tfppi.down <- cd8.em.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1250 |
cd8.em.tfppi.down$Dir <- "Down" |
|
|
1251 |
|
|
|
1252 |
cd8.em.tfppi <- do.call(rbind.data.frame, list(cd8.em.tfppi.down)) |
|
|
1253 |
} |
|
|
1254 |
cd8.em.tfppi$logP <- -log10(cd8.em.tfppi$P.value) |
|
|
1255 |
cd8.em.tfppi$logP[cd8.em.tfppi$Dir %in% c("Down")] <- -1 * cd8.em.tfppi$logP[cd8.em.tfppi$Dir %in% c("Down")] |
|
|
1256 |
|
|
|
1257 |
ggplot(cd8.em.tfppi[cd8.em.tfppi$P.value < 0.01, ], |
|
|
1258 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1259 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1260 |
geom_point() + |
|
|
1261 |
coord_flip() + |
|
|
1262 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1263 |
theme_cowplot() |
|
|
1264 |
``` |
|
|
1265 |
|
|
|
1266 |
|
|
|
1267 |
|
|
|
1268 |
## CD8.TE |
|
|
1269 |
|
|
|
1270 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1271 |
cd8.te.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.TE"), ]$X |
|
|
1272 |
cd8.te.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.TE"), ]$FDR > 1e-3] <- "" |
|
|
1273 |
|
|
|
1274 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.TE"), ], |
|
|
1275 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1276 |
geom_point() + |
|
|
1277 |
theme_cowplot() + |
|
|
1278 |
geom_text_repel(aes(label=cd8.te.labels)) + |
|
|
1279 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD8.TE-quadratic_volcano.pdf", |
|
|
1280 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1281 |
NULL |
|
|
1282 |
``` |
|
|
1283 |
|
|
|
1284 |
|
|
|
1285 |
What are the enriched pathways amongst these genes? |
|
|
1286 |
|
|
|
1287 |
```{r} |
|
|
1288 |
cd8.te.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.TE") & |
|
|
1289 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1290 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1291 |
enrich.dbs) |
|
|
1292 |
|
|
|
1293 |
cd8.te.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD8.TE") & |
|
|
1294 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1295 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1296 |
enrich.dbs) |
|
|
1297 |
``` |
|
|
1298 |
|
|
|
1299 |
|
|
|
1300 |
## MSigDB 2020 enrichments |
|
|
1301 |
|
|
|
1302 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1303 |
cd8.te.msigdb.up <- cd8.te.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1304 |
cd8.te.msigdb.up$Dir <- "Up" |
|
|
1305 |
|
|
|
1306 |
cd8.te.msigdb.down <- cd8.te.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1307 |
if(nrow(cd8.te.msigdb.down) > 0){ |
|
|
1308 |
cd8.te.msigdb.down$Dir <- "Down" |
|
|
1309 |
} |
|
|
1310 |
|
|
|
1311 |
cd8.te.msigdb <- do.call(rbind.data.frame, list(cd8.te.msigdb.up, cd8.te.msigdb.down)) |
|
|
1312 |
cd8.te.msigdb$logP <- -log10(cd8.te.msigdb$P.value) |
|
|
1313 |
cd8.te.msigdb$logP[cd8.te.msigdb$Dir %in% c("Down")] <- -1 * cd8.te.msigdb$logP[cd8.te.msigdb$Dir %in% c("Down")] |
|
|
1314 |
|
|
|
1315 |
ggplot(cd8.te.msigdb[cd8.te.msigdb$P.value < 0.01, ], |
|
|
1316 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1317 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1318 |
geom_point() + |
|
|
1319 |
coord_flip() + |
|
|
1320 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1321 |
theme_cowplot() |
|
|
1322 |
``` |
|
|
1323 |
|
|
|
1324 |
|
|
|
1325 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1326 |
cd8.te.tfppi.up <- cd8.te.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1327 |
if(nrow(cd8.te.tfppi.up) > 0){ |
|
|
1328 |
cd8.te.tfppi.up$Dir <- "Up" |
|
|
1329 |
} |
|
|
1330 |
|
|
|
1331 |
cd8.te.tfppi.down <- cd8.te.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1332 |
if(nrow(cd8.te.tfppi.down) > 0){ |
|
|
1333 |
cd8.te.tfppi.down$Dir <- "Down" |
|
|
1334 |
} |
|
|
1335 |
|
|
|
1336 |
cd8.te.tfppi <- do.call(rbind.data.frame, list(cd8.te.tfppi.up, cd8.te.tfppi.down)) |
|
|
1337 |
cd8.te.tfppi$logP <- -log10(cd8.te.tfppi$P.value) |
|
|
1338 |
cd8.te.tfppi$logP[cd8.te.tfppi$Dir %in% c("Down")] <- -1 * cd8.te.tfppi$logP[cd8.te.tfppi$Dir %in% c("Down")] |
|
|
1339 |
|
|
|
1340 |
ggplot(cd8.te.tfppi[cd8.te.tfppi$P.value < 0.01, ], |
|
|
1341 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1342 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1343 |
geom_point() + |
|
|
1344 |
coord_flip() + |
|
|
1345 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1346 |
theme_cowplot() |
|
|
1347 |
``` |
|
|
1348 |
|
|
|
1349 |
|
|
|
1350 |
|
|
|
1351 |
## CD4.Tfh |
|
|
1352 |
|
|
|
1353 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1354 |
tfh.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ]$X |
|
|
1355 |
tfh.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ]$FDR > 1e-3] <- "" |
|
|
1356 |
|
|
|
1357 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Tfh"), ], |
|
|
1358 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1359 |
geom_point() + |
|
|
1360 |
theme_cowplot() + |
|
|
1361 |
geom_text_repel(aes(label=tfh.labels)) + |
|
|
1362 |
ggsave("~/Dropbox/COVID19/Updated_plots/CD4.Tfh-quadratic_volcano.pdf", |
|
|
1363 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1364 |
NULL |
|
|
1365 |
``` |
|
|
1366 |
|
|
|
1367 |
What are the enriched pathways amongst these genes? |
|
|
1368 |
|
|
|
1369 |
```{r} |
|
|
1370 |
tfh.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Tfh") & |
|
|
1371 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1372 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1373 |
enrich.dbs) |
|
|
1374 |
|
|
|
1375 |
tfh.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("CD4.Tfh") & |
|
|
1376 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1377 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1378 |
enrich.dbs) |
|
|
1379 |
``` |
|
|
1380 |
|
|
|
1381 |
|
|
|
1382 |
## MSigDB 2020 enrichments |
|
|
1383 |
|
|
|
1384 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1385 |
tfh.msigdb.up <- tfh.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1386 |
if(!is.null(tfh.msigdb.up)){ |
|
|
1387 |
tfh.msigdb.up$Dir <- "Up" |
|
|
1388 |
} |
|
|
1389 |
|
|
|
1390 |
tfh.msigdb.down <- tfh.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1391 |
if(!is.null(tfh.msigdb.down)){ |
|
|
1392 |
tfh.msigdb.down$Dir <- "Down" |
|
|
1393 |
} |
|
|
1394 |
|
|
|
1395 |
if(!is.null(tfh.msigdb.down) & !is.null(tfh.msigdb.up)){ |
|
|
1396 |
tfh.msigdb <- do.call(rbind.data.frame, list(tfh.msigdb.up, tfh.msigdb.down)) |
|
|
1397 |
if(nrow(tfh.msigdb) > 0){ |
|
|
1398 |
tfh.msigdb$logP <- -log10(tfh.msigdb$P.value) |
|
|
1399 |
tfh.msigdb$logP[tfh.msigdb$Dir %in% c("Down")] <- -1 * tfh.msigdb$logP[tfh.msigdb$Dir %in% c("Down")] |
|
|
1400 |
|
|
|
1401 |
ggplot(tfh.msigdb[tfh.msigdb$P.value < 0.01, ], |
|
|
1402 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1403 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1404 |
geom_point() + |
|
|
1405 |
coord_flip() + |
|
|
1406 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1407 |
theme_cowplot() |
|
|
1408 |
} |
|
|
1409 |
} |
|
|
1410 |
``` |
|
|
1411 |
|
|
|
1412 |
|
|
|
1413 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1414 |
tfh.tfppi.up <- tfh.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1415 |
if(!is.null(tfh.tfppi.up)){ |
|
|
1416 |
tfh.tfppi.up$Dir <- "Up" |
|
|
1417 |
} |
|
|
1418 |
|
|
|
1419 |
tfh.tfppi.down <- tfh.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1420 |
if(!is.null(tfh.tfppi.down)){ |
|
|
1421 |
tfh.tfppi.down$Dir <- "Down" |
|
|
1422 |
} |
|
|
1423 |
|
|
|
1424 |
tfh.tfppi <- do.call(rbind.data.frame, list(tfh.tfppi.up, tfh.tfppi.down)) |
|
|
1425 |
if(nrow(tfh.tfppi) > 0){ |
|
|
1426 |
tfh.tfppi$logP <- -log10(tfh.tfppi$P.value) |
|
|
1427 |
tfh.tfppi$logP[tfh.tfppi$Dir %in% c("Down")] <- -1 * tfh.tfppi$logP[tfh.tfppi$Dir %in% c("Down")] |
|
|
1428 |
|
|
|
1429 |
ggplot(tfh.tfppi[tfh.tfppi$P.value < 0.01, ], |
|
|
1430 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1431 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1432 |
geom_point() + |
|
|
1433 |
coord_flip() + |
|
|
1434 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1435 |
theme_cowplot() |
|
|
1436 |
} |
|
|
1437 |
``` |
|
|
1438 |
|
|
|
1439 |
|
|
|
1440 |
|
|
|
1441 |
## gdT |
|
|
1442 |
|
|
|
1443 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1444 |
gdt.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("gdT"), ]$X |
|
|
1445 |
gdt.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("gdT"), ]$FDR > 1e-3] <- "" |
|
|
1446 |
|
|
|
1447 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("gdT"), ], |
|
|
1448 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1449 |
geom_point() + |
|
|
1450 |
theme_cowplot() + |
|
|
1451 |
geom_text_repel(aes(label=gdt.labels)) + |
|
|
1452 |
ggsave("~/Dropbox/COVID19/Updated_plots/gdT-quadratic_volcano.pdf", |
|
|
1453 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1454 |
NULL |
|
|
1455 |
``` |
|
|
1456 |
|
|
|
1457 |
What are the enriched pathways amongst these genes? |
|
|
1458 |
|
|
|
1459 |
```{r} |
|
|
1460 |
gdt.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("gdT") & |
|
|
1461 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1462 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1463 |
enrich.dbs) |
|
|
1464 |
|
|
|
1465 |
gdt.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("gdT") & |
|
|
1466 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1467 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1468 |
enrich.dbs) |
|
|
1469 |
``` |
|
|
1470 |
|
|
|
1471 |
|
|
|
1472 |
## MSigDB 2020 enrichments |
|
|
1473 |
|
|
|
1474 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1475 |
gdt.msigdb.up <- gdt.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1476 |
gdt.msigdb.up$Dir <- "Up" |
|
|
1477 |
|
|
|
1478 |
gdt.msigdb.down <- gdt.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1479 |
gdt.msigdb.down$Dir <- "Down" |
|
|
1480 |
|
|
|
1481 |
gdt.msigdb <- do.call(rbind.data.frame, list(gdt.msigdb.up, gdt.msigdb.down)) |
|
|
1482 |
gdt.msigdb$logP <- -log10(gdt.msigdb$P.value) |
|
|
1483 |
gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] <- -1 * gdt.msigdb$logP[gdt.msigdb$Dir %in% c("Down")] |
|
|
1484 |
|
|
|
1485 |
ggplot(gdt.msigdb[gdt.msigdb$P.value < 0.01, ], |
|
|
1486 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1487 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1488 |
geom_point() + |
|
|
1489 |
coord_flip() + |
|
|
1490 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1491 |
theme_cowplot() |
|
|
1492 |
``` |
|
|
1493 |
|
|
|
1494 |
|
|
|
1495 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1496 |
gdt.tfppi.up <- gdt.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1497 |
gdt.tfppi.up$Dir <- "Up" |
|
|
1498 |
|
|
|
1499 |
gdt.tfppi.down <- gdt.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1500 |
gdt.tfppi.down$Dir <- "Down" |
|
|
1501 |
|
|
|
1502 |
gdt.tfppi <- do.call(rbind.data.frame, list(gdt.tfppi.up, gdt.tfppi.down)) |
|
|
1503 |
gdt.tfppi$logP <- -log10(gdt.tfppi$P.value) |
|
|
1504 |
gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] <- -1 * gdt.tfppi$logP[gdt.tfppi$Dir %in% c("Down")] |
|
|
1505 |
|
|
|
1506 |
ggplot(gdt.tfppi[gdt.tfppi$P.value < 0.01, ], |
|
|
1507 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1508 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1509 |
geom_point() + |
|
|
1510 |
coord_flip() + |
|
|
1511 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1512 |
theme_cowplot() |
|
|
1513 |
``` |
|
|
1514 |
|
|
|
1515 |
|
|
|
1516 |
|
|
|
1517 |
|
|
|
1518 |
## MAIT |
|
|
1519 |
|
|
|
1520 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1521 |
mait.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("MAIT"), ]$X |
|
|
1522 |
mait.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("MAIT"), ]$FDR > 1e-3] <- "" |
|
|
1523 |
|
|
|
1524 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("MAIT"), ], |
|
|
1525 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1526 |
geom_point() + |
|
|
1527 |
theme_cowplot() + |
|
|
1528 |
geom_text_repel(aes(label=mait.labels)) + |
|
|
1529 |
ggsave("~/Dropbox/COVID19/Updated_plots/MAIT-quadratic_volcano.pdf", |
|
|
1530 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1531 |
NULL |
|
|
1532 |
``` |
|
|
1533 |
|
|
|
1534 |
What are the enriched pathways amongst these genes? |
|
|
1535 |
|
|
|
1536 |
```{r} |
|
|
1537 |
mait.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("MAIT") & |
|
|
1538 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1539 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1540 |
enrich.dbs) |
|
|
1541 |
|
|
|
1542 |
mait.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("MAIT") & |
|
|
1543 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1544 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1545 |
enrich.dbs) |
|
|
1546 |
``` |
|
|
1547 |
|
|
|
1548 |
|
|
|
1549 |
## MSigDB 2020 enrichments |
|
|
1550 |
|
|
|
1551 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1552 |
mait.msigdb.up <- mait.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1553 |
mait.msigdb.up$Dir <- "Up" |
|
|
1554 |
|
|
|
1555 |
mait.msigdb.down <- mait.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1556 |
mait.msigdb.down$Dir <- "Down" |
|
|
1557 |
|
|
|
1558 |
mait.msigdb <- do.call(rbind.data.frame, list(mait.msigdb.up, mait.msigdb.down)) |
|
|
1559 |
mait.msigdb$logP <- -log10(mait.msigdb$P.value) |
|
|
1560 |
mait.msigdb$logP[mait.msigdb$Dir %in% c("Down")] <- -1 * mait.msigdb$logP[mait.msigdb$Dir %in% c("Down")] |
|
|
1561 |
|
|
|
1562 |
ggplot(mait.msigdb[mait.msigdb$P.value < 0.01, ], |
|
|
1563 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1564 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1565 |
geom_point() + |
|
|
1566 |
coord_flip() + |
|
|
1567 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1568 |
theme_cowplot() |
|
|
1569 |
``` |
|
|
1570 |
|
|
|
1571 |
|
|
|
1572 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1573 |
mait.tfppi.up <- mait.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1574 |
mait.tfppi.up$Dir <- "Up" |
|
|
1575 |
|
|
|
1576 |
mait.tfppi.down <- mait.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1577 |
mait.tfppi.down$Dir <- "Down" |
|
|
1578 |
|
|
|
1579 |
mait.tfppi <- do.call(rbind.data.frame, list(mait.tfppi.up, mait.tfppi.down)) |
|
|
1580 |
mait.tfppi$logP <- -log10(mait.tfppi$P.value) |
|
|
1581 |
mait.tfppi$logP[mait.tfppi$Dir %in% c("Down")] <- -1 * mait.tfppi$logP[mait.tfppi$Dir %in% c("Down")] |
|
|
1582 |
|
|
|
1583 |
ggplot(mait.tfppi[mait.tfppi$P.value < 0.01, ], |
|
|
1584 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1585 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1586 |
geom_point() + |
|
|
1587 |
coord_flip() + |
|
|
1588 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1589 |
theme_cowplot() |
|
|
1590 |
``` |
|
|
1591 |
|
|
|
1592 |
|
|
|
1593 |
|
|
|
1594 |
## Treg |
|
|
1595 |
|
|
|
1596 |
```{r, fig.height=3.95, fig.width=4.95} |
|
|
1597 |
treg.labels <- quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("Treg"), ]$X |
|
|
1598 |
treg.labels[quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("Treg"), ]$FDR > 1e-3] <- "" |
|
|
1599 |
|
|
|
1600 |
ggplot(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("Treg"), ], |
|
|
1601 |
aes(x=logFC, y=-log10(FDR))) + |
|
|
1602 |
geom_point() + |
|
|
1603 |
theme_cowplot() + |
|
|
1604 |
geom_text_repel(aes(label=treg.labels)) + |
|
|
1605 |
ggsave("~/Dropbox/COVID19/Updated_plots/Treg-quadratic_volcano.pdf", |
|
|
1606 |
height=3.95, width=4.95, useDingbats=FALSE) + |
|
|
1607 |
NULL |
|
|
1608 |
``` |
|
|
1609 |
|
|
|
1610 |
What are the enriched pathways amongst these genes? |
|
|
1611 |
|
|
|
1612 |
```{r} |
|
|
1613 |
treg.enriched.up <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("Treg") & |
|
|
1614 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1615 |
quadratic.dge.df$logFC > 0, ]$X, |
|
|
1616 |
enrich.dbs) |
|
|
1617 |
|
|
|
1618 |
treg.enriched.down <- enrichr(quadratic.dge.df[quadratic.dge.df$Sub.Annotation %in% c("Treg") & |
|
|
1619 |
quadratic.dge.df$FDR < 0.01 & |
|
|
1620 |
quadratic.dge.df$logFC < 0, ]$X, |
|
|
1621 |
enrich.dbs) |
|
|
1622 |
``` |
|
|
1623 |
|
|
|
1624 |
|
|
|
1625 |
## MSigDB 2020 enrichments |
|
|
1626 |
|
|
|
1627 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1628 |
treg.msigdb.up <- treg.enriched.up[["MSigDB_Hallmark_2020"]] |
|
|
1629 |
treg.msigdb.up$Dir <- "Up" |
|
|
1630 |
|
|
|
1631 |
treg.msigdb.down <- treg.enriched.down[["MSigDB_Hallmark_2020"]] |
|
|
1632 |
treg.msigdb.down$Dir <- "Down" |
|
|
1633 |
|
|
|
1634 |
treg.msigdb <- do.call(rbind.data.frame, list(treg.msigdb.up, treg.msigdb.down)) |
|
|
1635 |
treg.msigdb$logP <- -log10(treg.msigdb$P.value) |
|
|
1636 |
treg.msigdb$logP[treg.msigdb$Dir %in% c("Down")] <- -1 * treg.msigdb$logP[treg.msigdb$Dir %in% c("Down")] |
|
|
1637 |
|
|
|
1638 |
ggplot(treg.msigdb[treg.msigdb$P.value < 0.01, ], |
|
|
1639 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1640 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1641 |
geom_point() + |
|
|
1642 |
coord_flip() + |
|
|
1643 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1644 |
theme_cowplot() |
|
|
1645 |
``` |
|
|
1646 |
|
|
|
1647 |
|
|
|
1648 |
```{r, fig.height=4.15, fig.width=4.15} |
|
|
1649 |
treg.tfppi.up <- treg.enriched.up[["Transcription_Factor_PPIs"]] |
|
|
1650 |
treg.tfppi.up$Dir <- "Up" |
|
|
1651 |
|
|
|
1652 |
treg.tfppi.down <- treg.enriched.down[["Transcription_Factor_PPIs"]] |
|
|
1653 |
treg.tfppi.down$Dir <- "Down" |
|
|
1654 |
|
|
|
1655 |
treg.tfppi <- do.call(rbind.data.frame, list(treg.tfppi.up, treg.tfppi.down)) |
|
|
1656 |
treg.tfppi$logP <- -log10(treg.tfppi$P.value) |
|
|
1657 |
treg.tfppi$logP[treg.tfppi$Dir %in% c("Down")] <- -1 * treg.tfppi$logP[treg.tfppi$Dir %in% c("Down")] |
|
|
1658 |
|
|
|
1659 |
ggplot(treg.tfppi[treg.tfppi$P.value < 0.01, ], |
|
|
1660 |
aes(x=reorder(Term, logP), y=logP)) + |
|
|
1661 |
geom_hline(yintercept=0, lty=2, colour='grey80') + |
|
|
1662 |
geom_point() + |
|
|
1663 |
coord_flip() + |
|
|
1664 |
labs(x="Pathway", y="Odds Rato") + |
|
|
1665 |
theme_cowplot() |
|
|
1666 |
``` |
|
|
1667 |
|
|
|
1668 |
|
|
|
1669 |
|
|
|
1670 |
|