--- a +++ b/Notebooks/DA_analysis-symptom_onset.Rmd @@ -0,0 +1,605 @@ +--- +title: "COVID19: Differential abundance based on symptom onset" +output: html_notebook +--- + +Performing differential abundance testing using a negative binomial GLM. Cell counts per donor sample are used as input, and the total number of cells +captured (after QC) are used to normalize the model counts. This notebook is concerned with using the initial clustering results and their differential +abundance according to symptom onset in hospitalised patients. + + +```{r, warning=FALSE, message=FALSE} +library(ggplot2) +library(ggsci) +library(cowplot) +library(RColorBrewer) +library(reshape2) +library(colorspace) +library(ggthemes) +library(edgeR) +library(scales) +library(ggrepel) +library(dplyr) +library(kableExtra) +``` + + +```{r} +covid.meta <- read.csv("~/Dropbox/COVID19/Data/Metadata FINAL 10122020.csv", + header=TRUE, stringsAsFactors=FALSE) + +covid.meta$Days_from_onset[covid.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA +covid.meta$Days_from_onset <- as.numeric(covid.meta$Days_from_onset) +``` + +Plot days since symptom onset by disease severity and Site. + +```{r, fig.height=2.95, fig.width=3.95,} +covid.meta$OrderedSeverity <- ordered(covid.meta$D0_status_summary, + levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) + +ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & + !covid.meta$D0_status_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & + !is.na(covid.meta$Days_from_onset), ], + aes(x=OrderedSeverity, y=Days_from_onset)) + + geom_boxplot() + + labs(x="Disease severity", y="Days from\nsymptom onset") + + theme_cowplot() + + theme(aspect=1, + axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + + ggsave("~/Dropbox/COVID19/plot.dir/SymptomOnset_severity-boxplot.pdf", + height=2.95, width=3.95, useDingbats=FALSE) + + NULL +``` + + +```{r, fig.height=2.95, fig.width=3.95,} +covid.meta$OrderedSeverity <- ordered(covid.meta$D0_status_summary, + levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) + +ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & + !covid.meta$D0_status_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & + !is.na(covid.meta$Days_from_onset), ], + aes(x=Site, y=Days_from_onset)) + + geom_boxplot() + + labs(x="Disease severity", y="Days from\nsymptom onset") + + theme_cowplot() + + theme(aspect=1, + axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + + ggsave("~/Dropbox/COVID19/plot.dir/SymptomOnset_Site-boxplot.pdf", + height=2.95, width=3.95, useDingbats=FALSE) + + NULL +``` + + + +```{r, warning=FALSE, message=FALSE} +all.meta <- read.table("~/Dropbox/COVID19/Data/COVID19_scMeta-data.tsv", + sep="\t", header=TRUE, stringsAsFactors=FALSE) +rownames(all.meta) <- all.meta$CellID + +doublet.remove <- read.table("~/Dropbox/COVID19/Data/Annotations/All_doublets.tsv", + sep="\t", header=FALSE, stringsAsFactors=FALSE) + +# remove BGCV01_CV0209 and CV0198 +all.meta <- all.meta[!all.meta$sample_id %in% c("BGCV01_CV0902"), ] +all.meta <- all.meta[!all.meta$patient_id %in% c("CV0198"), ] +all.meta$Days_from_onset[all.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA +all.meta$Days_from_onset <- as.numeric(all.meta$Days_from_onset) + +initial_clustering <- read.table("~/Dropbox/COVID19/Data/combined_dec_MetaData.txt", + sep="\t", header=TRUE, stringsAsFactors=FALSE, row.names=1) +rownames(initial_clustering) <- gsub(rownames(initial_clustering), pattern="^b", replacement="") +initial_clustering$initial_clustering <- gsub(initial_clustering$initial_clustering, pattern="^b", replacement="") +initial_clustering$CellID <- rownames(initial_clustering) + +all.meta <- merge(all.meta, initial_clustering[, c("CellID", "initial_clustering")], by='CellID') + +n.cell.vecc <- table(all.meta$sample_id) + +all.meta <- all.meta[!all.meta$CellID %in% doublet.remove$V1, ] +``` + + +```{r} +cell.xtab <- as.data.frame(xtabs( ~ sample_id + initial_clustering, data=all.meta)) +cell.cast <- dcast(cell.xtab, sample_id ~ initial_clustering, value.var='Freq') +rownames(cell.cast) <- cell.cast$sample_id +cell.cast <- cell.cast[, -1] +cell.freq <- as.data.frame(t(sapply(rownames(cell.cast), FUN=function(X) as.numeric(cell.cast[X, ]/n.cell.vecc[X]), + simplify=TRUE))) + +rownames(cell.freq) <- rownames(cell.cast) +colnames(cell.freq) <- colnames(cell.cast) +cell.freq$sample_id <- rownames(cell.cast) +cell.melt <- melt(cell.freq, id.vars=c('sample_id')) +colnames(cell.melt) <- c("sample_id", "CellType", "Freq") +cell.melt$CellType <- as.character(cell.melt$CellType) + +cell.freq.merge <- merge(cell.melt, covid.meta, by='sample_id') +``` + + +## Cluster-based DA analysis: days since symptom onset + +```{r} +# set up testing model +rownames(covid.meta) <- covid.meta$sample_id +init.meta <- covid.meta[!covid.meta$D0_status_summary %in% c("Non_covid", "LPS", "Healthy"), ] +init.meta$OrderedSeverity <- ordered(init.meta$D0_status_summary, + levels=c("Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) +init.meta <- init.meta[init.meta$D0_status_summary %in% c("Mild", "Moderate", "Severe", "Critical"), ] + +init.meta$Days_from_onset[init.meta$Days_from_onset %in% c("Not_known")] <- NA +init.meta$Days_from_onset <- as.numeric(init.meta$Days_from_onset) +init.meta <- init.meta[!is.na(init.meta$Days_from_onset), ] + +init.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, + data=init.meta[init.meta$Collection_Day %in% c("D0"), ]) + +# count cells +cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")], + all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")])) + +cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] +test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) +cell.freq.tab <- cell.freq.tab[, test.samps] +init.model <- init.model[colnames(cell.freq.tab), ] + +init.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) + +#estimate dispersions +init.dge <- estimateDisp(init.dge, design=init.model) +init.linear.fit <- glmQLFit(init.dge, init.model, robust=TRUE) +init.res <- as.data.frame(topTags(glmQLFTest(init.linear.fit, coef=4), sort.by='none', n=Inf)) +init.res$CellType <- rownames(init.res) + +init.res$Sig <- as.numeric(init.res$FDR < 0.1) +init.res$Diff <- sign(init.res$logFC) +init.res$Diff[init.res$FDR > 0.1] <- 0 +table(init.res$Diff) +``` + + + +```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} +mx.lfc <- max(abs(init.res$logFC)) +eps <- mx.lfc * 0.05 + +init.resplot.labels <- init.res$CellType +init.resplot.labels[init.res$Sig == 0] <- "" + +ggplot(init.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + + geom_point(shape=21, size=4) + + theme_cowplot() + + scale_fill_manual(values=c("black", "red")) + + scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + + guides(fill=guide_legend(title="FDR < 0.1")) + + geom_text_repel(aes(label=init.resplot.labels), + fill='white') + + labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + + ggsave("~/Dropbox/COVID19/plot.dir/All_edgeR_volcano_daysOnset-linear.pdf", + height=2.95, width=4.15, useDingbats=FALSE) + + NULL +``` + + +Show a plot of just the DA clusters. + +```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} +da.clusters <- unique(c(init.resplot.labels)) + +group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") +names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") + +# censor outliers to the 95th quantile for each cell type. +plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & + !cell.freq.merge$D0_status_summary %in% c("LPS", "Non_covid") & + !is.na(cell.freq.merge$Days_from_onset) & + cell.freq.merge$CellType %in% da.clusters, ] + +q95.ct <- sapply(unique(plotting.df$CellType), + FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) +q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) + +plotting.df <- merge(plotting.df, q95.df, by='CellType') +plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 + +plotting.df$D0_status_summary <- ordered(plotting.df$D0_status_summary, + levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) + +ggplot(plotting.df[!plotting.df$D0_status_summary %in% c("Healthy", "Asymptomatic"), ], + aes(x=Days_from_onset, y=Freq)) + + #geom_boxplot(outlier.size=0.5, coef=1.5) + + geom_point(aes(colour=D0_status_summary), size=1) + + stat_smooth(method=MASS::rlm) + + theme_cowplot() + + facet_wrap(~CellType, scales="free_y", nrow=3) + + scale_colour_manual(values=group.cols) + + expand_limits(y=c(0)) + + theme(aspect=1/1.3, + legend.key.size=unit(0.4, "cm"), + strip.background=element_rect(fill='white', colour='white'), + strip.text=element_text(size=12)) + + labs(x="Severity", y="Proportion") + + guides(colour=guide_legend(title="Severity")) + + ggsave("~/Dropbox/COVID19/plot.dir/All_proportions-DA_daysOnset-points.pdf", + height=5.15, width=9.95, useDingbats=FALSE) + + NULL +``` + +Many of these changes seem to be driven by critically ill patients. + + +```{r, warning=FALSE, message=FALSE} +write.table(init.res, + file="~/Dropbox/COVID19/Data/SymptomOnset_resTable.txt", + sep="\t", quote=FALSE, row.names=FALSE) + +# print P-values to html table +clon.lm.pvalues <- data.frame("CellType"=init.res$CellType, "logFC"=init.res$logFC, + "Pvalue"=init.res$PValue, + "FDR"=init.res$FDR) + +kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% + save_kable("~/Dropbox/COVID19/plot.dir/DA_symptomOnset_trend_pvals.html", + self_contained=TRUE) + +kable(clon.lm.pvalues) +``` + + +## Cluster-based DA analysis: days since symptom onset - excluding critical patients + +```{r} +# set up testing model +rownames(covid.meta) <- covid.meta$sample_id +sanscrit.meta <- covid.meta[!covid.meta$D0_status_summary %in% c("Non_covid", "LPS", "Healthy", "Critical"), ] +sanscrit.meta$Days_from_onset[sanscrit.meta$Days_from_onset %in% c("Not_known")] <- NA +sanscrit.meta$Days_from_onset <- as.numeric(sanscrit.meta$Days_from_onset) +sanscrit.meta <- sanscrit.meta[!is.na(sanscrit.meta$Days_from_onset), ] + +sanscrit.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, + data=sanscrit.meta[sanscrit.meta$Collection_Day %in% c("D0"), ]) + +# count cells +cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic", "Critical")], + all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic", "Critical")])) + +cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] +test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) +cell.freq.tab <- cell.freq.tab[, test.samps] +sanscrit.model <- sanscrit.model[colnames(cell.freq.tab), ] + +sanscrit.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) + +#estimate dispersions +sanscrit.dge <- estimateDisp(sanscrit.dge, design=sanscrit.model) +sanscrit.linear.fit <- glmQLFit(sanscrit.dge, sanscrit.model, robust=TRUE) +sanscrit.res <- as.data.frame(topTags(glmQLFTest(sanscrit.linear.fit, coef=4), sort.by='none', n=Inf)) +sanscrit.res$CellType <- rownames(sanscrit.res) + +sanscrit.res$Sig <- as.numeric(sanscrit.res$FDR < 0.1) +sanscrit.res$Diff <- sign(sanscrit.res$logFC) +sanscrit.res$Diff[sanscrit.res$FDR > 0.1] <- 0 +table(sanscrit.res$Diff) +``` + + + +```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} +mx.lfc <- max(abs(sanscrit.res$logFC)) +eps <- mx.lfc * 0.05 + +sanscrit.resplot.labels <- sanscrit.res$CellType +sanscrit.resplot.labels[sanscrit.res$Sig == 0] <- "" + +ggplot(sanscrit.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + + geom_point(shape=21, size=4) + + theme_cowplot() + + scale_fill_manual(values=c("black", "red")) + + scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + + guides(fill=guide_legend(title="FDR < 0.1")) + + geom_text_repel(aes(label=sanscrit.resplot.labels), + fill='white') + + labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + + ggsave("~/Dropbox/COVID19/plot.dir/All_edgeR_volcano_daysOnset-noCritical-linear.pdf", + height=2.95, width=4.15, useDingbats=FALSE) + + NULL +``` + + +Show a plot of just the DA clusters. + +```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} +da.clusters <- unique(c(sanscrit.resplot.labels)) + +group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") +names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") + +# censor outliers to the 95th quantile for each cell type. +plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & + !cell.freq.merge$D0_status_summary %in% c("LPS", "Non_covid") & + !is.na(cell.freq.merge$Days_from_onset) & + cell.freq.merge$CellType %in% da.clusters, ] + +q95.ct <- sapply(unique(plotting.df$CellType), + FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) +q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) + +plotting.df <- merge(plotting.df, q95.df, by='CellType') +plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 + +plotting.df$D0_status_summary <- ordered(plotting.df$D0_status_summary, + levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe")) + +ggplot(plotting.df[!plotting.df$D0_status_summary %in% c("Healthy", "Asymptomatic", "Critical"), ], + aes(x=Days_from_onset, y=Freq)) + + #geom_boxplot(outlier.size=0.5, coef=1.5) + + geom_point(aes(colour=D0_status_summary), size=1) + + stat_smooth(method=MASS::rlm) + + theme_cowplot() + + facet_wrap(~CellType, scales="free_y", nrow=3) + + scale_colour_manual(values=group.cols) + + expand_limits(y=c(0)) + + theme(aspect=1/1.3, + legend.key.size=unit(0.4, "cm"), + strip.background=element_rect(fill='white', colour='white'), + strip.text=element_text(size=12)) + + labs(x="Severity", y="Proportion") + + guides(colour=guide_legend(title="Symptom duration")) + + ggsave("~/Dropbox/COVID19/plot.dir/All_proportions-DA_daysOnset-noCritical-points.pdf", + height=5.15, width=9.95, useDingbats=FALSE) + + NULL +``` + +Many of these changes seem to be driven by critically ill patients. + + +```{r, warning=FALSE, message=FALSE} +write.table(sanscrit.res, + file="~/Dropbox/COVID19/Data/SymptomOnset-noCritical_resTable.txt", + sep="\t", quote=FALSE, row.names=FALSE) + +# print P-values to html table +clon.lm.pvalues <- data.frame("CellType"=sanscrit.res$CellType, "logFC"=sanscrit.res$logFC, + "Pvalue"=sanscrit.res$PValue, + "FDR"=sanscrit.res$FDR) + +kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% + save_kable("~/Dropbox/COVID19/plot.dir/DA_symptomOnset-noCritical_trend_pvals.html", + self_contained=TRUE) + +kable(clon.lm.pvalues) +``` + + +Compare the log fold changes with and without the critical patients. + +```{r} +colnames(init.res) <- c(paste0("Full.", colnames(init.res)[c(1:5)]), "CellType", "Full.Sig", "Full.Diff") +colnames(sanscrit.res) <- c(paste0("woCritical.", colnames(sanscrit.res)[c(1:5)]), "CellType", "woCritical.Sig", "woCritical.Diff") +``` + + +```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=2.95} +compare.model <- merge(init.res, sanscrit.res, by='CellType') + +compare.model$Sigs <- 0 +compare.model$Sigs[compare.model$Full.Sig == 1 & compare.model$woCritical.Sig == 1] <- 1 + +cell.labels <- compare.model$CellType +cell.labels[compare.model$Sigs == 0] <- "" + +ggplot(compare.model, aes(x=Full.logFC, y=woCritical.logFC)) + + geom_hline(yintercept=0, lty=2) + + geom_vline(xintercept=0, lty=2) + + geom_point() + + theme_cowplot() + + labs(x="log Fold Change: Full model", + y="log Fold Change: w/o Critical") + + geom_text_repel(aes(label=cell.labels), + force=50) + + ggsave("~/Dropbox/COVID19/plot.dir/SymptomOnset_compare-points.pdf", + height=2.95, width=2.95, useDingbats=FALSE) + + NULL +``` + + +## Sensitivity analysis + +Remove the outliers w.r.t. time since symptom onset to test the sensitivity. + +## Cluster-based DA analysis: days since symptom onset - excluding > 24 days onset + +```{r, fig.height=2.95, fig.width=3.95,} + +ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & + covid.meta$Days_from_onset <= 24 & + !covid.meta$D0_status_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & + !is.na(covid.meta$Days_from_onset), ], + aes(x=OrderedSeverity, y=Days_from_onset)) + + geom_boxplot() + + labs(x="Disease severity", y="Days from\nsymptom onset") + + theme_cowplot() + + theme(aspect=1, + axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + + ggsave("~/Dropbox/COVID19/plot.dir/SymptomOnset_severity-sensitivityAnalysis-boxplot.pdf", + height=2.95, width=3.95, useDingbats=FALSE) + + NULL +``` + +This shows the distribution of symptom duration w.r.t. disease severity. + +```{r} +# set up testing model +rownames(covid.meta) <- covid.meta$sample_id +symoutlier.meta <- covid.meta[!covid.meta$D0_status_summary %in% c("Non_covid", "LPS", "Healthy"), ] +symoutlier.meta$Days_from_onset[symoutlier.meta$Days_from_onset %in% c("Not_known")] <- NA +symoutlier.meta$Days_from_onset <- as.numeric(symoutlier.meta$Days_from_onset) +symoutlier.meta <- symoutlier.meta[!is.na(symoutlier.meta$Days_from_onset), ] +symoutlier.meta <- symoutlier.meta[symoutlier.meta$Days_from_onset <= 24, ] + +symoutlier.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, + data=symoutlier.meta[symoutlier.meta$Collection_Day %in% c("D0"), ]) + +# count cells +cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + all.meta$Days_from_onset <= 24 & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy")], + all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & + !is.na(all.meta$Days_from_onset) & + all.meta$Days_from_onset <= 24 & + !all.meta$D0_status_summary %in% c("LPS", "Non_covid", "Healthy")])) + +cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] +test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) +cell.freq.tab <- cell.freq.tab[, test.samps] +symoutlier.model <- symoutlier.model[colnames(cell.freq.tab), ] + +symoutlier.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) + +#estimate dispersions +symoutlier.dge <- estimateDisp(symoutlier.dge, design=symoutlier.model) +symoutlier.linear.fit <- glmQLFit(symoutlier.dge, symoutlier.model, robust=TRUE) +symoutlier.res <- as.data.frame(topTags(glmQLFTest(symoutlier.linear.fit, coef=4), sort.by='none', n=Inf)) +symoutlier.res$CellType <- rownames(symoutlier.res) + +symoutlier.res$Sig <- as.numeric(symoutlier.res$FDR < 0.1) +symoutlier.res$Diff <- sign(symoutlier.res$logFC) +symoutlier.res$Diff[symoutlier.res$FDR > 0.1] <- 0 +table(symoutlier.res$Diff) +``` + + + +```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} +mx.lfc <- max(abs(symoutlier.res$logFC)) +eps <- mx.lfc * 0.05 + +symoutlier.resplot.labels <- symoutlier.res$CellType +symoutlier.resplot.labels[symoutlier.res$Sig == 0] <- "" + +ggplot(symoutlier.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + + geom_point(shape=21, size=4) + + theme_cowplot() + + scale_fill_manual(values=c("black", "red")) + + scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + + guides(fill=guide_legend(title="FDR < 0.1")) + + geom_text_repel(aes(label=symoutlier.resplot.labels), + fill='white') + + labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + + ggsave("~/Dropbox/COVID19/plot.dir/All_edgeR_volcano_daysOnset-SensitivityAnalysis-linear.pdf", + height=2.95, width=4.15, useDingbats=FALSE) + + NULL +``` + + +Show a plot of just the DA clusters. + +```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} +da.clusters <- unique(c(symoutlier.resplot.labels)) + +group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") +names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") + +# censor outliers to the 95th quantile for each cell type. +plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & + !cell.freq.merge$D0_status_summary %in% c("LPS", "Non_covid") & + !is.na(cell.freq.merge$Days_from_onset) & + cell.freq.merge$CellType %in% da.clusters, ] + +q95.ct <- sapply(unique(plotting.df$CellType), + FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) +q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) + +plotting.df <- merge(plotting.df, q95.df, by='CellType') +plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 + +plotting.df$D0_status_summary <- ordered(plotting.df$D0_status_summary, + levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe")) + +ggplot(plotting.df[!plotting.df$D0_status_summary %in% c("Healthy") & + plotting.df$Days_from_onset <= 24, ], + aes(x=Days_from_onset, y=Freq)) + + #geom_boxplot(outlier.size=0.5, coef=1.5) + + geom_point(aes(colour=D0_status_summary), size=1) + + stat_smooth(method=MASS::rlm) + + theme_cowplot() + + facet_wrap(~CellType, scales="free_y", nrow=3) + + scale_colour_manual(values=group.cols) + + expand_limits(y=c(0)) + + theme(aspect=1/1.3, + legend.key.size=unit(0.4, "cm"), + strip.background=element_rect(fill='white', colour='white'), + strip.text=element_text(size=12)) + + labs(x="Symptom duration", y="Proportion") + + guides(colour=guide_legend(title="Symptom duration")) + + ggsave("~/Dropbox/COVID19/plot.dir/All_proportions-DA_daysOnset-sensitivityAnalysis-points.pdf", + height=5.15, width=9.95, useDingbats=FALSE) + + NULL +``` + +This shows the relationship between symptom duration and cell type abundance, excluding the outlier patients. + + +```{r, warning=FALSE, message=FALSE} +write.table(symoutlier.res, + file="~/Dropbox/COVID19/Data/SymptomOnset-sensitivityAnalysis_resTable.txt", + sep="\t", quote=FALSE, row.names=FALSE) + +# print P-values to html table +clon.lm.pvalues <- data.frame("CellType"=symoutlier.res$CellType, "logFC"=symoutlier.res$logFC, + "Pvalue"=symoutlier.res$PValue, + "FDR"=symoutlier.res$FDR) + +kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% + save_kable("~/Dropbox/COVID19/plot.dir/DA_symptomOnset-sensitivityAnalysis_trend_pvals.html", + self_contained=TRUE) + +kable(clon.lm.pvalues) +``` + + +Compare the log fold changes with and without the critical patients. + +```{r} +# colnames(init.res) <- c(paste0("Full.", colnames(init.res)[c(1:5)]), "CellType", "Full.Sig", "Full.Diff") +colnames(symoutlier.res) <- c(paste0("Ltday24.", colnames(symoutlier.res)[c(1:5)]), "CellType", "woCritical.Sig", "woCritical.Diff") +``` + + +```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=3.35} +compare.model <- merge(init.res, symoutlier.res, by='CellType') + +compare.model$Sigs <- 0 +compare.model$Sigs[compare.model$Full.Sig == 1 & compare.model$woCritical.Sig == 1] <- 1 + +cell.labels <- compare.model$CellType +cell.labels[compare.model$Sigs == 0] <- "" + +ggplot(compare.model, aes(x=Full.logFC, y=Ltday24.logFC)) + + geom_hline(yintercept=0, lty=2) + + geom_vline(xintercept=0, lty=2) + + geom_point() + + theme_cowplot() + + labs(x="log Fold Change: Full model", + y="log Fold Change: Symptoms\n<24 days") + + geom_text_repel(aes(label=cell.labels), + force=50) + + ggsave("~/Dropbox/COVID19/plot.dir/SymptomOnset_compare-sensitivityAnalysis-points.pdf", + height=2.95, width=3.35, useDingbats=FALSE) + + NULL +``` + + +