|
a |
|
b/Notebooks/DA_analysis-symptom_onset - Updated.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "COVID19: Differential abundance based on symptom onset - Updated" |
|
|
3 |
output: html_notebook |
|
|
4 |
--- |
|
|
5 |
|
|
|
6 |
Performing differential abundance testing using a negative binomial GLM. Cell counts per donor sample are used as input, and the total number of cells |
|
|
7 |
captured (after QC) are used to normalize the model counts. This notebook is concerned with using the initial clustering results and their differential |
|
|
8 |
abundance according to symptom onset in hospitalised patients. |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
```{r, warning=FALSE, message=FALSE} |
|
|
12 |
library(ggplot2) |
|
|
13 |
library(ggsci) |
|
|
14 |
library(cowplot) |
|
|
15 |
library(RColorBrewer) |
|
|
16 |
library(reshape2) |
|
|
17 |
library(colorspace) |
|
|
18 |
library(ggthemes) |
|
|
19 |
library(edgeR) |
|
|
20 |
library(scales) |
|
|
21 |
library(ggrepel) |
|
|
22 |
library(dplyr) |
|
|
23 |
library(kableExtra) |
|
|
24 |
``` |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
```{r} |
|
|
28 |
covid.meta <- read.csv("~/Dropbox/COVID19/Data/basic_COVID19_PBMC_metadata_160212.csv", |
|
|
29 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
30 |
old.meta <- read.csv("~/Dropbox/COVID19/Data/Metadata FINAL 10122020.csv", |
|
|
31 |
header=TRUE, stringsAsFactors=FALSE) |
|
|
32 |
old.meta$sample_id[old.meta$sample_id %in% c("BGCV13_CV0201")] <- "BGCV06_CV0201" |
|
|
33 |
old.meta$sample_id[old.meta$sample_id %in% c("BGCV06_CV0326")] <- "BGCV13_CV0326" |
|
|
34 |
|
|
|
35 |
covid.meta$AgeRange <- covid.meta$Age |
|
|
36 |
covid.meta$Status_on_day_collection_summary[covid.meta$Status_on_day_collection_summary %in% c("LPS_10hours")] <- "LPS" |
|
|
37 |
covid.meta$Status_on_day_collection_summary[covid.meta$Status_on_day_collection_summary %in% c("LPS_90mins")] <- "LPS" |
|
|
38 |
|
|
|
39 |
covid.meta <- merge(covid.meta[, !colnames(covid.meta) %in% c("Age")], old.meta[, c("sample_id", "patient_id", "Age")], |
|
|
40 |
by='sample_id') |
|
|
41 |
|
|
|
42 |
covid.meta$Days_from_onset[covid.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA |
|
|
43 |
covid.meta$Days_from_onset <- as.numeric(covid.meta$Days_from_onset) |
|
|
44 |
``` |
|
|
45 |
|
|
|
46 |
Plot days since symptom onset by disease severity and Site. |
|
|
47 |
|
|
|
48 |
```{r, fig.height=2.95, fig.width=3.95,} |
|
|
49 |
covid.meta$OrderedSeverity <- ordered(covid.meta$Status_on_day_collection_summary, |
|
|
50 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
51 |
|
|
|
52 |
ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & |
|
|
53 |
!covid.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & |
|
|
54 |
!is.na(covid.meta$Days_from_onset), ], |
|
|
55 |
aes(x=OrderedSeverity, y=Days_from_onset)) + |
|
|
56 |
geom_boxplot() + |
|
|
57 |
labs(x="Disease severity", y="Days from\nsymptom onset") + |
|
|
58 |
theme_cowplot() + |
|
|
59 |
theme(aspect=1, |
|
|
60 |
axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + |
|
|
61 |
ggsave("~/Dropbox/COVID19/Updated_plots/SymptomOnset_severity-boxplot.pdf", |
|
|
62 |
height=2.95, width=3.95, useDingbats=FALSE) + |
|
|
63 |
NULL |
|
|
64 |
``` |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
```{r, fig.height=2.95, fig.width=3.95,} |
|
|
68 |
covid.meta$OrderedSeverity <- ordered(covid.meta$Status_on_day_collection_summary, |
|
|
69 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
70 |
|
|
|
71 |
ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & |
|
|
72 |
!covid.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & |
|
|
73 |
!is.na(covid.meta$Days_from_onset), ], |
|
|
74 |
aes(x=Site, y=Days_from_onset)) + |
|
|
75 |
geom_boxplot() + |
|
|
76 |
labs(x="Disease severity", y="Days from\nsymptom onset") + |
|
|
77 |
theme_cowplot() + |
|
|
78 |
theme(aspect=1, |
|
|
79 |
axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + |
|
|
80 |
ggsave("~/Dropbox/COVID19/Updated_plots/SymptomOnset_Site-boxplot.pdf", |
|
|
81 |
height=2.95, width=3.95, useDingbats=FALSE) + |
|
|
82 |
NULL |
|
|
83 |
``` |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
```{r, warning=FALSE, message=FALSE} |
|
|
88 |
all.meta <- read.table("~/Dropbox/COVID19/Data/Updated/COVID19_scMeta-data.tsv", |
|
|
89 |
sep="\t", header=TRUE, stringsAsFactors=FALSE) |
|
|
90 |
rownames(all.meta) <- all.meta$CellID |
|
|
91 |
|
|
|
92 |
doublet.remove <- read.table("~/Dropbox/COVID19/Data/Updated/All_doublets.tsv", |
|
|
93 |
sep="\t", header=FALSE, stringsAsFactors=FALSE) |
|
|
94 |
|
|
|
95 |
# remove BGCV01_CV0209 and CV0198 |
|
|
96 |
all.meta <- all.meta[!all.meta$sample_id %in% c("BGCV01_CV0902"), ] |
|
|
97 |
all.meta <- all.meta[!all.meta$patient_id %in% c("CV0198"), ] |
|
|
98 |
all.meta$Days_from_onset[all.meta$Days_from_onset %in% c("Not_known", "Healthy")] <- NA |
|
|
99 |
all.meta$Days_from_onset <- as.numeric(all.meta$Days_from_onset) |
|
|
100 |
|
|
|
101 |
n.cell.vecc <- table(all.meta$sample_id) |
|
|
102 |
|
|
|
103 |
all.meta <- all.meta[!all.meta$CellID %in% doublet.remove$V1, ] |
|
|
104 |
``` |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
```{r} |
|
|
108 |
cell.xtab <- as.data.frame(xtabs( ~ sample_id + initial_clustering, data=all.meta)) |
|
|
109 |
cell.cast <- dcast(cell.xtab, sample_id ~ initial_clustering, value.var='Freq') |
|
|
110 |
rownames(cell.cast) <- cell.cast$sample_id |
|
|
111 |
cell.cast <- cell.cast[, -1] |
|
|
112 |
cell.freq <- as.data.frame(t(sapply(rownames(cell.cast), FUN=function(X) as.numeric(cell.cast[X, ]/n.cell.vecc[X]), |
|
|
113 |
simplify=TRUE))) |
|
|
114 |
|
|
|
115 |
rownames(cell.freq) <- rownames(cell.cast) |
|
|
116 |
colnames(cell.freq) <- colnames(cell.cast) |
|
|
117 |
cell.freq$sample_id <- rownames(cell.cast) |
|
|
118 |
cell.melt <- melt(cell.freq, id.vars=c('sample_id')) |
|
|
119 |
colnames(cell.melt) <- c("sample_id", "CellType", "Freq") |
|
|
120 |
cell.melt$CellType <- as.character(cell.melt$CellType) |
|
|
121 |
|
|
|
122 |
cell.freq.merge <- merge(cell.melt, covid.meta, by='sample_id') |
|
|
123 |
``` |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
## Cluster-based DA analysis: days since symptom onset |
|
|
127 |
|
|
|
128 |
```{r} |
|
|
129 |
# set up testing model |
|
|
130 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
131 |
init.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS", "Healthy"), ] |
|
|
132 |
init.meta$OrderedSeverity <- ordered(init.meta$Status_on_day_collection_summary, |
|
|
133 |
levels=c("Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
134 |
init.meta <- init.meta[init.meta$Status_on_day_collection_summary %in% c("Mild", "Moderate", "Severe", "Critical"), ] |
|
|
135 |
|
|
|
136 |
init.meta$Days_from_onset[init.meta$Days_from_onset %in% c("Not_known")] <- NA |
|
|
137 |
init.meta$Days_from_onset <- as.numeric(init.meta$Days_from_onset) |
|
|
138 |
init.meta <- init.meta[!is.na(init.meta$Days_from_onset), ] |
|
|
139 |
|
|
|
140 |
init.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, |
|
|
141 |
data=init.meta[init.meta$Collection_Day %in% c("D0"), ]) |
|
|
142 |
|
|
|
143 |
# count cells |
|
|
144 |
cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & |
|
|
145 |
!is.na(all.meta$Days_from_onset) & |
|
|
146 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")], |
|
|
147 |
all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & |
|
|
148 |
!is.na(all.meta$Days_from_onset) & |
|
|
149 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic")])) |
|
|
150 |
|
|
|
151 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] |
|
|
152 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
153 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
154 |
init.model <- init.model[colnames(cell.freq.tab), ] |
|
|
155 |
|
|
|
156 |
init.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
157 |
|
|
|
158 |
#estimate dispersions |
|
|
159 |
init.dge <- estimateDisp(init.dge, design=init.model) |
|
|
160 |
init.linear.fit <- glmQLFit(init.dge, init.model, robust=TRUE) |
|
|
161 |
init.res <- as.data.frame(topTags(glmQLFTest(init.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
162 |
init.res$CellType <- rownames(init.res) |
|
|
163 |
|
|
|
164 |
init.res$Sig <- as.numeric(init.res$FDR < 0.1) |
|
|
165 |
init.res$Diff <- sign(init.res$logFC) |
|
|
166 |
init.res$Diff[init.res$FDR > 0.1] <- 0 |
|
|
167 |
table(init.res$Diff) |
|
|
168 |
``` |
|
|
169 |
|
|
|
170 |
|
|
|
171 |
|
|
|
172 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
173 |
mx.lfc <- max(abs(init.res$logFC)) |
|
|
174 |
eps <- mx.lfc * 0.05 |
|
|
175 |
|
|
|
176 |
init.resplot.labels <- init.res$CellType |
|
|
177 |
init.resplot.labels[init.res$Sig == 0] <- "" |
|
|
178 |
|
|
|
179 |
ggplot(init.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
180 |
geom_point(shape=21, size=4) + |
|
|
181 |
theme_cowplot() + |
|
|
182 |
scale_fill_manual(values=c("black", "red")) + |
|
|
183 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
184 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
185 |
geom_text_repel(aes(label=init.resplot.labels), |
|
|
186 |
fill='white') + |
|
|
187 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
188 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_edgeR_volcano_daysOnset-linear.pdf", |
|
|
189 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
190 |
NULL |
|
|
191 |
``` |
|
|
192 |
|
|
|
193 |
|
|
|
194 |
Show a plot of just the DA clusters. |
|
|
195 |
|
|
|
196 |
```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} |
|
|
197 |
da.clusters <- unique(c(init.resplot.labels)) |
|
|
198 |
|
|
|
199 |
group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") |
|
|
200 |
names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") |
|
|
201 |
|
|
|
202 |
# censor outliers to the 95th quantile for each cell type. |
|
|
203 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
204 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid") & |
|
|
205 |
!is.na(cell.freq.merge$Days_from_onset) & |
|
|
206 |
cell.freq.merge$CellType %in% da.clusters, ] |
|
|
207 |
|
|
|
208 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
209 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
210 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
211 |
|
|
|
212 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
213 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
214 |
|
|
|
215 |
plotting.df$Status_on_day_collection_summary <- ordered(plotting.df$Status_on_day_collection_summary, |
|
|
216 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical")) |
|
|
217 |
|
|
|
218 |
ggplot(plotting.df[!plotting.df$Status_on_day_collection_summary %in% c("Healthy", "Asymptomatic"), ], |
|
|
219 |
aes(x=Days_from_onset, y=Freq)) + |
|
|
220 |
#geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
221 |
geom_point(aes(colour=Status_on_day_collection_summary), size=1) + |
|
|
222 |
stat_smooth(method=MASS::rlm) + |
|
|
223 |
theme_cowplot() + |
|
|
224 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
225 |
scale_colour_manual(values=group.cols) + |
|
|
226 |
expand_limits(y=c(0)) + |
|
|
227 |
theme(aspect=1/1.3, |
|
|
228 |
legend.key.size=unit(0.4, "cm"), |
|
|
229 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
230 |
strip.text=element_text(size=12)) + |
|
|
231 |
labs(x="Severity", y="Proportion") + |
|
|
232 |
guides(colour=guide_legend(title="Severity")) + |
|
|
233 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_proportions-DA_daysOnset-points.pdf", |
|
|
234 |
height=5.15, width=9.95, useDingbats=FALSE) + |
|
|
235 |
NULL |
|
|
236 |
``` |
|
|
237 |
|
|
|
238 |
Many of these changes seem to be driven by critically ill patients. |
|
|
239 |
|
|
|
240 |
|
|
|
241 |
```{r, warning=FALSE, message=FALSE} |
|
|
242 |
write.table(init.res, |
|
|
243 |
file="~/Dropbox/COVID19/Data/Updated/SymptomOnset_resTable.txt", |
|
|
244 |
sep="\t", quote=FALSE, row.names=FALSE) |
|
|
245 |
|
|
|
246 |
# print P-values to html table |
|
|
247 |
clon.lm.pvalues <- data.frame("CellType"=init.res$CellType, "logFC"=init.res$logFC, |
|
|
248 |
"Pvalue"=init.res$PValue, |
|
|
249 |
"FDR"=init.res$FDR) |
|
|
250 |
|
|
|
251 |
kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% |
|
|
252 |
save_kable("~/Dropbox/COVID19/Updated_plots/DA_symptomOnset_trend_pvals.html", |
|
|
253 |
self_contained=TRUE) |
|
|
254 |
|
|
|
255 |
kable(clon.lm.pvalues) |
|
|
256 |
``` |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
## Cluster-based DA analysis: days since symptom onset - excluding critical patients |
|
|
260 |
|
|
|
261 |
```{r} |
|
|
262 |
# set up testing model |
|
|
263 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
264 |
sanscrit.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS", "Healthy", "Critical"), ] |
|
|
265 |
sanscrit.meta$Days_from_onset[sanscrit.meta$Days_from_onset %in% c("Not_known")] <- NA |
|
|
266 |
sanscrit.meta$Days_from_onset <- as.numeric(sanscrit.meta$Days_from_onset) |
|
|
267 |
sanscrit.meta <- sanscrit.meta[!is.na(sanscrit.meta$Days_from_onset), ] |
|
|
268 |
|
|
|
269 |
sanscrit.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, |
|
|
270 |
data=sanscrit.meta[sanscrit.meta$Collection_Day %in% c("D0"), ]) |
|
|
271 |
|
|
|
272 |
# count cells |
|
|
273 |
cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & |
|
|
274 |
!is.na(all.meta$Days_from_onset) & |
|
|
275 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic", "Critical")], |
|
|
276 |
all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & |
|
|
277 |
!is.na(all.meta$Days_from_onset) & |
|
|
278 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy", "Asymptomatic", "Critical")])) |
|
|
279 |
|
|
|
280 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] |
|
|
281 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
282 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
283 |
sanscrit.model <- sanscrit.model[colnames(cell.freq.tab), ] |
|
|
284 |
|
|
|
285 |
sanscrit.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
286 |
|
|
|
287 |
#estimate dispersions |
|
|
288 |
sanscrit.dge <- estimateDisp(sanscrit.dge, design=sanscrit.model) |
|
|
289 |
sanscrit.linear.fit <- glmQLFit(sanscrit.dge, sanscrit.model, robust=TRUE) |
|
|
290 |
sanscrit.res <- as.data.frame(topTags(glmQLFTest(sanscrit.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
291 |
sanscrit.res$CellType <- rownames(sanscrit.res) |
|
|
292 |
|
|
|
293 |
sanscrit.res$Sig <- as.numeric(sanscrit.res$FDR < 0.1) |
|
|
294 |
sanscrit.res$Diff <- sign(sanscrit.res$logFC) |
|
|
295 |
sanscrit.res$Diff[sanscrit.res$FDR > 0.1] <- 0 |
|
|
296 |
table(sanscrit.res$Diff) |
|
|
297 |
``` |
|
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
|
301 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
302 |
mx.lfc <- max(abs(sanscrit.res$logFC)) |
|
|
303 |
eps <- mx.lfc * 0.05 |
|
|
304 |
|
|
|
305 |
sanscrit.resplot.labels <- sanscrit.res$CellType |
|
|
306 |
sanscrit.resplot.labels[sanscrit.res$Sig == 0] <- "" |
|
|
307 |
|
|
|
308 |
ggplot(sanscrit.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
309 |
geom_point(shape=21, size=4) + |
|
|
310 |
theme_cowplot() + |
|
|
311 |
scale_fill_manual(values=c("black", "red")) + |
|
|
312 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
313 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
314 |
geom_text_repel(aes(label=sanscrit.resplot.labels), |
|
|
315 |
fill='white') + |
|
|
316 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
317 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_edgeR_volcano_daysOnset-noCritical-linear.pdf", |
|
|
318 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
319 |
NULL |
|
|
320 |
``` |
|
|
321 |
|
|
|
322 |
|
|
|
323 |
Show a plot of just the DA clusters. |
|
|
324 |
|
|
|
325 |
```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} |
|
|
326 |
da.clusters <- unique(c(sanscrit.resplot.labels)) |
|
|
327 |
|
|
|
328 |
group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") |
|
|
329 |
names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") |
|
|
330 |
|
|
|
331 |
# censor outliers to the 95th quantile for each cell type. |
|
|
332 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
333 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid") & |
|
|
334 |
!is.na(cell.freq.merge$Days_from_onset) & |
|
|
335 |
cell.freq.merge$CellType %in% da.clusters, ] |
|
|
336 |
|
|
|
337 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
338 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
339 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
340 |
|
|
|
341 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
342 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
343 |
|
|
|
344 |
plotting.df$Status_on_day_collection_summary <- ordered(plotting.df$Status_on_day_collection_summary, |
|
|
345 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe")) |
|
|
346 |
|
|
|
347 |
ggplot(plotting.df[!plotting.df$Status_on_day_collection_summary %in% c("Healthy", "Asymptomatic", "Critical"), ], |
|
|
348 |
aes(x=Days_from_onset, y=Freq)) + |
|
|
349 |
#geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
350 |
geom_point(aes(colour=Status_on_day_collection_summary), size=1) + |
|
|
351 |
stat_smooth(method=MASS::rlm) + |
|
|
352 |
theme_cowplot() + |
|
|
353 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
354 |
scale_colour_manual(values=group.cols) + |
|
|
355 |
expand_limits(y=c(0)) + |
|
|
356 |
theme(aspect=1/1.3, |
|
|
357 |
legend.key.size=unit(0.4, "cm"), |
|
|
358 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
359 |
strip.text=element_text(size=12)) + |
|
|
360 |
labs(x="Severity", y="Proportion") + |
|
|
361 |
guides(colour=guide_legend(title="Symptom duration")) + |
|
|
362 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_proportions-DA_daysOnset-noCritical-points.pdf", |
|
|
363 |
height=5.15, width=9.95, useDingbats=FALSE) + |
|
|
364 |
NULL |
|
|
365 |
``` |
|
|
366 |
|
|
|
367 |
Many of these changes seem to be driven by critically ill patients. |
|
|
368 |
|
|
|
369 |
|
|
|
370 |
```{r, warning=FALSE, message=FALSE} |
|
|
371 |
write.table(sanscrit.res, |
|
|
372 |
file="~/Dropbox/COVID19/Data/Updated/SymptomOnset-noCritical_resTable.txt", |
|
|
373 |
sep="\t", quote=FALSE, row.names=FALSE) |
|
|
374 |
|
|
|
375 |
# print P-values to html table |
|
|
376 |
clon.lm.pvalues <- data.frame("CellType"=sanscrit.res$CellType, "logFC"=sanscrit.res$logFC, |
|
|
377 |
"Pvalue"=sanscrit.res$PValue, |
|
|
378 |
"FDR"=sanscrit.res$FDR) |
|
|
379 |
|
|
|
380 |
kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% |
|
|
381 |
save_kable("~/Dropbox/COVID19/Updated_plots/DA_symptomOnset-noCritical_trend_pvals.html", |
|
|
382 |
self_contained=TRUE) |
|
|
383 |
|
|
|
384 |
kable(clon.lm.pvalues) |
|
|
385 |
``` |
|
|
386 |
|
|
|
387 |
|
|
|
388 |
Compare the log fold changes with and without the critical patients. |
|
|
389 |
|
|
|
390 |
```{r} |
|
|
391 |
colnames(init.res) <- c(paste0("Full.", colnames(init.res)[c(1:5)]), "CellType", "Full.Sig", "Full.Diff") |
|
|
392 |
colnames(sanscrit.res) <- c(paste0("woCritical.", colnames(sanscrit.res)[c(1:5)]), "CellType", "woCritical.Sig", "woCritical.Diff") |
|
|
393 |
``` |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=2.95} |
|
|
397 |
compare.model <- merge(init.res, sanscrit.res, by='CellType') |
|
|
398 |
|
|
|
399 |
compare.model$Sigs <- 0 |
|
|
400 |
compare.model$Sigs[compare.model$Full.Sig == 1 & compare.model$woCritical.Sig == 1] <- 1 |
|
|
401 |
|
|
|
402 |
cell.labels <- compare.model$CellType |
|
|
403 |
cell.labels[compare.model$Sigs == 0] <- "" |
|
|
404 |
|
|
|
405 |
ggplot(compare.model, aes(x=Full.logFC, y=woCritical.logFC)) + |
|
|
406 |
geom_hline(yintercept=0, lty=2) + |
|
|
407 |
geom_vline(xintercept=0, lty=2) + |
|
|
408 |
geom_point() + |
|
|
409 |
theme_cowplot() + |
|
|
410 |
labs(x="log Fold Change: Full model", |
|
|
411 |
y="log Fold Change: w/o Critical") + |
|
|
412 |
geom_text_repel(aes(label=cell.labels), |
|
|
413 |
force=50) + |
|
|
414 |
ggsave("~/Dropbox/COVID19/Updated_plots/SymptomOnset_compare-points.pdf", |
|
|
415 |
height=2.95, width=2.95, useDingbats=FALSE) + |
|
|
416 |
NULL |
|
|
417 |
``` |
|
|
418 |
|
|
|
419 |
|
|
|
420 |
## Sensitivity analysis |
|
|
421 |
|
|
|
422 |
Remove the outliers w.r.t. time since symptom onset to test the sensitivity. |
|
|
423 |
|
|
|
424 |
## Cluster-based DA analysis: days since symptom onset - excluding > 24 days onset |
|
|
425 |
|
|
|
426 |
```{r, fig.height=2.95, fig.width=3.95,} |
|
|
427 |
|
|
|
428 |
ggplot(covid.meta[covid.meta$Collection_Day %in% c("D0") & |
|
|
429 |
covid.meta$Days_from_onset <= 24 & |
|
|
430 |
!covid.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Asymptomatic", "Healthy") & |
|
|
431 |
!is.na(covid.meta$Days_from_onset), ], |
|
|
432 |
aes(x=OrderedSeverity, y=Days_from_onset)) + |
|
|
433 |
geom_boxplot() + |
|
|
434 |
labs(x="Disease severity", y="Days from\nsymptom onset") + |
|
|
435 |
theme_cowplot() + |
|
|
436 |
theme(aspect=1, |
|
|
437 |
axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + |
|
|
438 |
ggsave("~/Dropbox/COVID19/Updated_plots/SymptomOnset_severity-sensitivityAnalysis-boxplot.pdf", |
|
|
439 |
height=2.95, width=3.95, useDingbats=FALSE) + |
|
|
440 |
NULL |
|
|
441 |
``` |
|
|
442 |
|
|
|
443 |
This shows the distribution of symptom duration w.r.t. disease severity. |
|
|
444 |
|
|
|
445 |
```{r} |
|
|
446 |
# set up testing model |
|
|
447 |
rownames(covid.meta) <- covid.meta$sample_id |
|
|
448 |
symoutlier.meta <- covid.meta[!covid.meta$Status_on_day_collection_summary %in% c("Non_covid", "LPS", "Healthy"), ] |
|
|
449 |
symoutlier.meta$Days_from_onset[symoutlier.meta$Days_from_onset %in% c("Not_known")] <- NA |
|
|
450 |
symoutlier.meta$Days_from_onset <- as.numeric(symoutlier.meta$Days_from_onset) |
|
|
451 |
symoutlier.meta <- symoutlier.meta[!is.na(symoutlier.meta$Days_from_onset), ] |
|
|
452 |
symoutlier.meta <- symoutlier.meta[symoutlier.meta$Days_from_onset <= 24, ] |
|
|
453 |
|
|
|
454 |
symoutlier.model <- model.matrix(~ Sex + Age + Site + Days_from_onset, |
|
|
455 |
data=symoutlier.meta[symoutlier.meta$Collection_Day %in% c("D0"), ]) |
|
|
456 |
|
|
|
457 |
# count cells |
|
|
458 |
cell.freq.tab <- t(table(all.meta$sample_id[all.meta$Collection_Day %in% c("D0") & |
|
|
459 |
!is.na(all.meta$Days_from_onset) & |
|
|
460 |
all.meta$Days_from_onset <= 24 & |
|
|
461 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy")], |
|
|
462 |
all.meta$initial_clustering[all.meta$Collection_Day %in% c("D0") & |
|
|
463 |
!is.na(all.meta$Days_from_onset) & |
|
|
464 |
all.meta$Days_from_onset <= 24 & |
|
|
465 |
!all.meta$Status_on_day_collection_summary %in% c("LPS", "Non_covid", "Healthy")])) |
|
|
466 |
|
|
|
467 |
cell.freq.tab <- cell.freq.tab[!rownames(cell.freq.tab) %in% c("Doublet", "Doublets", "Doublets:Bcell", "Doublets:Platelet"), ] |
|
|
468 |
test.samps <- intersect(colnames(cell.freq.tab), names(n.cell.vecc)) |
|
|
469 |
cell.freq.tab <- cell.freq.tab[, test.samps] |
|
|
470 |
symoutlier.model <- symoutlier.model[colnames(cell.freq.tab), ] |
|
|
471 |
|
|
|
472 |
symoutlier.dge <- DGEList(cell.freq.tab, lib.size=log(n.cell.vecc[test.samps])) |
|
|
473 |
|
|
|
474 |
#estimate dispersions |
|
|
475 |
symoutlier.dge <- estimateDisp(symoutlier.dge, design=symoutlier.model) |
|
|
476 |
symoutlier.linear.fit <- glmQLFit(symoutlier.dge, symoutlier.model, robust=TRUE) |
|
|
477 |
symoutlier.res <- as.data.frame(topTags(glmQLFTest(symoutlier.linear.fit, coef=4), sort.by='none', n=Inf)) |
|
|
478 |
symoutlier.res$CellType <- rownames(symoutlier.res) |
|
|
479 |
|
|
|
480 |
symoutlier.res$Sig <- as.numeric(symoutlier.res$FDR < 0.1) |
|
|
481 |
symoutlier.res$Diff <- sign(symoutlier.res$logFC) |
|
|
482 |
symoutlier.res$Diff[symoutlier.res$FDR > 0.1] <- 0 |
|
|
483 |
table(symoutlier.res$Diff) |
|
|
484 |
``` |
|
|
485 |
|
|
|
486 |
|
|
|
487 |
|
|
|
488 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=4.15} |
|
|
489 |
mx.lfc <- max(abs(symoutlier.res$logFC)) |
|
|
490 |
eps <- mx.lfc * 0.05 |
|
|
491 |
|
|
|
492 |
symoutlier.resplot.labels <- symoutlier.res$CellType |
|
|
493 |
symoutlier.resplot.labels[symoutlier.res$Sig == 0] <- "" |
|
|
494 |
|
|
|
495 |
ggplot(symoutlier.res, aes(x=logFC, y=-log10(FDR), fill=as.character(Sig))) + |
|
|
496 |
geom_point(shape=21, size=4) + |
|
|
497 |
theme_cowplot() + |
|
|
498 |
scale_fill_manual(values=c("black", "red")) + |
|
|
499 |
scale_x_continuous(limits=c(-mx.lfc - eps, mx.lfc + eps), oob=squish) + |
|
|
500 |
guides(fill=guide_legend(title="FDR < 0.1")) + |
|
|
501 |
geom_text_repel(aes(label=symoutlier.resplot.labels), |
|
|
502 |
fill='white') + |
|
|
503 |
labs(x="log fold change", y=expression(paste("-log"[10], " FDR"))) + |
|
|
504 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_edgeR_volcano_daysOnset-SensitivityAnalysis-linear.pdf", |
|
|
505 |
height=2.95, width=4.15, useDingbats=FALSE) + |
|
|
506 |
NULL |
|
|
507 |
``` |
|
|
508 |
|
|
|
509 |
|
|
|
510 |
Show a plot of just the DA clusters. |
|
|
511 |
|
|
|
512 |
```{r, warning=FALSE, message=FALSE, fig.height=5.15, fig.width=9.95} |
|
|
513 |
da.clusters <- unique(c(symoutlier.resplot.labels)) |
|
|
514 |
|
|
|
515 |
group.cols <- c("#2ca02c", "#1f77b4", "#9467bd", "#fed976", "#fd8d3c", "#e31a1c", "#800026", "#252525") |
|
|
516 |
names(group.cols) <- c("Healthy", "LPS", "Non_covid", "Asymptomatic", "Mild", "Moderate", "Severe", "Critical") |
|
|
517 |
|
|
|
518 |
# censor outliers to the 95th quantile for each cell type. |
|
|
519 |
plotting.df <- cell.freq.merge[cell.freq.merge$Collection_Day %in% c("D0") & |
|
|
520 |
!cell.freq.merge$Status_on_day_collection_summary %in% c("LPS", "Non_covid") & |
|
|
521 |
!is.na(cell.freq.merge$Days_from_onset) & |
|
|
522 |
cell.freq.merge$CellType %in% da.clusters, ] |
|
|
523 |
|
|
|
524 |
q95.ct <- sapply(unique(plotting.df$CellType), |
|
|
525 |
FUN=function(x) quantile(plotting.df[plotting.df$CellType %in% x, ]$Freq, c(0.05, 0.95), na.rm=TRUE)[2]) |
|
|
526 |
q95.df <- data.frame("CellType"=gsub(names(q95.ct), pattern="\\.95%", replacement=""), "Q95"=q95.ct) |
|
|
527 |
|
|
|
528 |
plotting.df <- merge(plotting.df, q95.df, by='CellType') |
|
|
529 |
plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Freq <- plotting.df[plotting.df$Freq >= plotting.df$Q95, ]$Q95 |
|
|
530 |
|
|
|
531 |
plotting.df$Status_on_day_collection_summary <- ordered(plotting.df$Status_on_day_collection_summary, |
|
|
532 |
levels=c("Healthy", "Asymptomatic", "Mild", "Moderate", "Severe")) |
|
|
533 |
|
|
|
534 |
ggplot(plotting.df[!plotting.df$Status_on_day_collection_summary %in% c("Healthy") & |
|
|
535 |
plotting.df$Days_from_onset <= 24, ], |
|
|
536 |
aes(x=Days_from_onset, y=Freq)) + |
|
|
537 |
#geom_boxplot(outlier.size=0.5, coef=1.5) + |
|
|
538 |
geom_point(aes(colour=Status_on_day_collection_summary), size=1) + |
|
|
539 |
stat_smooth(method=MASS::rlm) + |
|
|
540 |
theme_cowplot() + |
|
|
541 |
facet_wrap(~CellType, scales="free_y", nrow=3) + |
|
|
542 |
scale_colour_manual(values=group.cols) + |
|
|
543 |
expand_limits(y=c(0)) + |
|
|
544 |
theme(aspect=1/1.3, |
|
|
545 |
legend.key.size=unit(0.4, "cm"), |
|
|
546 |
strip.background=element_rect(fill='white', colour='white'), |
|
|
547 |
strip.text=element_text(size=12)) + |
|
|
548 |
labs(x="Symptom duration", y="Proportion") + |
|
|
549 |
guides(colour=guide_legend(title="Symptom duration")) + |
|
|
550 |
ggsave("~/Dropbox/COVID19/Updated_plots/All_proportions-DA_daysOnset-sensitivityAnalysis-points.pdf", |
|
|
551 |
height=5.15, width=9.95, useDingbats=FALSE) + |
|
|
552 |
NULL |
|
|
553 |
``` |
|
|
554 |
|
|
|
555 |
This shows the relationship between symptom duration and cell type abundance, excluding the outlier patients. |
|
|
556 |
|
|
|
557 |
|
|
|
558 |
```{r, warning=FALSE, message=FALSE} |
|
|
559 |
write.table(symoutlier.res, |
|
|
560 |
file="~/Dropbox/COVID19/Data/Updated/SymptomOnset-sensitivityAnalysis_resTable.txt", |
|
|
561 |
sep="\t", quote=FALSE, row.names=FALSE) |
|
|
562 |
|
|
|
563 |
# print P-values to html table |
|
|
564 |
clon.lm.pvalues <- data.frame("CellType"=symoutlier.res$CellType, "logFC"=symoutlier.res$logFC, |
|
|
565 |
"Pvalue"=symoutlier.res$PValue, |
|
|
566 |
"FDR"=symoutlier.res$FDR) |
|
|
567 |
|
|
|
568 |
kbl(clon.lm.pvalues) %>% kable_paper(full_width=FALSE) %>% |
|
|
569 |
save_kable("~/Dropbox/COVID19/Updated_plots/DA_symptomOnset-sensitivityAnalysis_trend_pvals.html", |
|
|
570 |
self_contained=TRUE) |
|
|
571 |
|
|
|
572 |
kable(clon.lm.pvalues) |
|
|
573 |
``` |
|
|
574 |
|
|
|
575 |
|
|
|
576 |
Compare the log fold changes with and without the critical patients. |
|
|
577 |
|
|
|
578 |
```{r} |
|
|
579 |
# colnames(init.res) <- c(paste0("Full.", colnames(init.res)[c(1:5)]), "CellType", "Full.Sig", "Full.Diff") |
|
|
580 |
colnames(symoutlier.res) <- c(paste0("Ltday24.", colnames(symoutlier.res)[c(1:5)]), "CellType", "woCritical.Sig", "woCritical.Diff") |
|
|
581 |
``` |
|
|
582 |
|
|
|
583 |
|
|
|
584 |
```{r, warning=FALSE, message=FALSE, fig.height=2.95, fig.width=3.35} |
|
|
585 |
compare.model <- merge(init.res, symoutlier.res, by='CellType') |
|
|
586 |
|
|
|
587 |
compare.model$Sigs <- 0 |
|
|
588 |
compare.model$Sigs[compare.model$Full.Sig == 1 & compare.model$woCritical.Sig == 1] <- 1 |
|
|
589 |
|
|
|
590 |
cell.labels <- compare.model$CellType |
|
|
591 |
cell.labels[compare.model$Sigs == 0] <- "" |
|
|
592 |
|
|
|
593 |
ggplot(compare.model, aes(x=Full.logFC, y=Ltday24.logFC)) + |
|
|
594 |
geom_hline(yintercept=0, lty=2) + |
|
|
595 |
geom_vline(xintercept=0, lty=2) + |
|
|
596 |
geom_point() + |
|
|
597 |
theme_cowplot() + |
|
|
598 |
labs(x="log Fold Change: Full model", |
|
|
599 |
y="log Fold Change: Symptoms\n<24 days") + |
|
|
600 |
geom_text_repel(aes(label=cell.labels), |
|
|
601 |
force=50) + |
|
|
602 |
ggsave("~/Dropbox/COVID19/Updated_plots/SymptomOnset_compare-sensitivityAnalysis-points.pdf", |
|
|
603 |
height=2.95, width=3.35, useDingbats=FALSE) + |
|
|
604 |
NULL |
|
|
605 |
``` |
|
|
606 |
|
|
|
607 |
|
|
|
608 |
|