[bd22c4]: / eda / IJM / proteomics / 6.0_gelsolin_stats.R

Download this file

94 lines (63 with data), 2.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# load proteomics data with clinical metadata
proteomics_data_path = "~/Desktop/UW_2020/COVID19_multi-omics/COVID-19_Multi-Omics/data/proteomics_measurements_w_clinical_metadata.csv"
# note the 'color_by' column represents the four patient groups:
#COVID_ICU COVID_NONICU NONCOVID_ICU NONCOVID_NONICU
#51 51 15 10
proteomics_df <- read.table(proteomics_data_path, sep=",", header=T)
covid_df <- subset(proteomics_df, COVID == 1)
no_covid_df <- subset(proteomics_df, COVID == 0)
#### 1. COVID pGSC ~ Hospital Free Days at Day 45 ####
test_1 <- lm(X7974 ~ Hospital_free_days_45, data=covid_df)
summary(test_1)
# 1.03e-06
# Multiple R-squared: 0.2133
# dof: 100
#### 2. NO COVID pGSC ~ Hospital Free Days at Day 45 ####
test_2 <- lm(X7974 ~ Hospital_free_days_45, data=no_covid_df)
summary(test_2)
# p-value: 0.0388
# Multiple R-squared: 0.1728
# dof: 23
#### 3. COVID_NONICU-COVID_ICU ####
gelsolin.lm <- lm(X7974 ~ color_by, data = proteomics_df)
gelsolin.av <- aov(gelsolin.lm)
summary(gelsolin.av)
test_3 <- TukeyHSD(gelsolin.av)
test_3
# p-value: 4e-07
#### 4. COVID pGSC ~ Vent Free Days at Day 28 ####
test_4 <- lm(X7974 ~ Vent_free_days, data=covid_df)
summary(test_4)
# p-value: 2.35e-05
# Multiple R-squared: 0.1645
# dof: 100
#### 5. NO COVID pGSC ~ Vent Free Days at Day 28 ####
test_5 <- lm(X7974 ~ Vent_free_days, data=no_covid_df)
summary(test_5)
# p-value: 0.371
# Multiple R-squared: 0.03492
# dof: 23
#### 6. COVID pGSC ~ APACHE II ####
test_6 <- lm(X7974 ~ APACHEII, data=covid_df)
summary(test_6)
# p-value: 0.000992
# Multiple R-squared: 0.1774
# dof: 56
#### 7. COVID pGSC ~ SOFA ####
test_7 <- lm(X7974 ~ SOFA, data=covid_df)
summary(test_7)
# p-value: 3.04e-05
# Multiple R-squared: 0.2732
# dof: 55
#### 8. COVID pGSC ~ SAPS II ####
test_8 <- lm(X7974 ~ SAPS2, data=covid_df)
summary(test_8)
# p-value: 3.04e-05
# Multiple R-squared: 0.2732
# dof: 55
#### 9. COVID pGSC ~ P/F ratio ####
test_9 <- lm(X7974 ~ PF_ratio_numeric, data=covid_df)
summary(test_9)
# p-value: 0.0253
# Multiple R-squared: 0.102
# dof: 47